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ABSTRACT

As software vulnerabilities grow in volume and complexity, re-

searchers proposed various Artificial Intelligence (AI)-based ap-

proaches to help under-resourced security analysts to find, detect,

and localize vulnerabilities. However, security analysts still have to

spend a huge amount of effort to manually fix or repair such vulner-

able functions. Recent work proposed an NMT-based Automated

Vulnerability Repair, but it is still far from perfect due to various

limitations. In this paper, we propose VulRepair, a T5-based au-

tomated software vulnerability repair approach that leverages the

pre-training and BPE components to address various technical lim-

itations of prior work. Through an extensive experiment with over

8,482 vulnerability fixes from real-world software projects, we find

that our VulRepair achieves a Perfect Prediction of 44%, which

is 13%-21% more accurate than competitive baseline approaches.

These results lead us to conclude that our VulRepair is consider-

ably more accurate than two baseline approaches, highlighting the

substantial advancement of NMT-based Automated Vulnerability

Repairs. Our additional investigation also shows that our VulRe-

pair can accurately repair as many as 745 out of 1,706 real-world

well-known vulnerabilities (e.g., Use After Free, Improper Input Val-

idation, OS Command Injection), demonstrating the practicality and

significance of our VulRepair for generating vulnerability repairs,

helping under-resourced security analysts on fixing vulnerabilities.
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1 INTRODUCTION

Software vulnerabilities are security flaws, glitches, or weaknesses

found in software systems that could be exploited by attackers to

undertake malicious activities [6]. In particular, criminal groups

may make use of unresolved security vulnerabilities in software

to attack and damage a system to steal confidential information or

extort assets, resulting in severe economic damage [17]. Accord-

ing to the statistics of the National Vulnerability Database (NVD),

the number of vulnerabilities discovered per year is considerably

increased five times from 4k+/year in 2011 to 20k+/year in 2021 [1].

Recently, researchers proposed various Artificial Intelligence

(AI)-based approaches to help under-resourced security analysts

better understand the characteristics of vulnerabilities (e.g., vulner-

ability analysis) [2, 3, 5, 7, 44, 57, 58, 62] and find vulnerabilities

faster (e.g., vulnerability predictions) [12, 20, 21, 25, 26, 34, 37, 43, 49ś

51, 55, 63, 65]. For example, AI-based vulnerability prediction ap-

proaches are proposed to predict if a given function is vulnerable or

not at the various granularity levels (e.g., function [12, 37, 43, 65],

line [20, 21, 28, 36, 38ś40, 48, 59]) using various types of information

(e.g., graph properties [12, 21, 55, 65], semantic [20, 43], syntactic

information [12, 21, 55, 65], and mutual information [36]). Such

vulnerability prediction approaches only help security analysts to

find, detect, and localize the location of vulnerabilities. However,

security analysts still have to spend a huge amount of effort to

manually fix or repair vulnerabilities [4, 11, 35].

Recently, Chen et al. [13] proposed VRepair [13], an automated

vulnerability repair approach that leverages a Transformer-based

Neural Machine Translation (NMT). VRepair is proposed to address

various challenges of prior work in the area of automated program

repairs (e.g., SequenceR [14], an RNN-based NMT model). However,

VRepair is still inaccurate due to the following three limitations.

Limitation 1 : VRepair is trained on a small bug-fix corpus of

23,607 C/C++ functions, which may generate suboptimal

vector representations.

Limitation 2 : VRepair leverages the word-level tokenization and

the copy mechanism to handle Out-Of-Vocabulary (OOV),

limiting its ability to generate new tokens that never appear

in a vulnerable function but are newly introduced in the

vulnerability repair.
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Limitation 3 : VRepair leverages a Vanilla Transformer (i.e., a ba-

sic Encoder-Decoder Transformer architecture) which uses

an absolute positional encoding, limiting the ability of its

self-attention mechanism to learn the relative position infor-

mation of code tokens within the input sequences.

In this paper, we propose VulRepair, a T5-based Vulnerability

Repair approach, aiming to address the aforementioned limita-

tions of VRepair [13]. First, our VulRepair employs a pre-training

CodeT5 component from a large codebase (i.e., CodeSearchNet+C/

C# [23, 56] with 8.35 million functions from 8 different Program-

ming Languages) to generate more meaningful vector representa-

tion, employs BPE tokenization to handle Out-Of-Vocabulary (OOV)

issues, and employs a T5 architecture that considers the relative

position information in the self-attention mechanism. Through an

extensive evaluation of our VulRepair on CVEFixes [10] and Big-

Vul dataset [18] consisting of 8,482 vulnerability fixes from 1,754

large-scale open-source software projects with over 180+ different

CWE types spanning from 1999 to 2021, we address the following

four research questions:

(RQ1) What is the accuracy of our VulRepair for generating

software vulnerability repairs?

Results. Our VulRepair achieves a Perfect Prediction of

44%, which is 21% more accurate than VRepair [13] and 13%

more accurate than CodeBERT [19].

(RQ2) What is the benefit of using a pre-training component

for vulnerability repairs?

Results. Regardless of the model architectures, the PL/NL

pre-training corpus improves the percentage of perfect pre-

dictions by 30%-38% for vulnerability repair approaches,

highlighting the substantial benefits of using the pre-training

component for vulnerability repair approaches.

(RQ3) What is the benefit of using BPE tokenization for vul-

nerability repairs?

Results. Regardless of the model architectures, the BPE

subword tokenization improves the percentage of perfect

predictions by 9%-14% for vulnerability repair approaches,

highlighting the substantial benefits of using BPE tokeniza-

tion for vulnerability repair approaches.

(RQ4) What are the contributions of the components of our

VulRepair?

Results. The pre-training component of our VulRepair is

the most important component. Without a proper design

of T5 architecture for our VulRepair, the performance can

be decreased from 44% to 1%. This finding highlights that

designing an NMT-based automated vulnerability repair ap-

proach is still a challenging task, which requires a deep un-

derstanding of modern Transformer architectures to achieve

the highest possible %perfect predictions.

These results lead us to conclude that our VulRepair is consider-

ably more accurate baseline approaches, highlighting the substan-

tial advancement of NMT-based automated vulnerability repairs.

Thus, our VulRepair is expected to recommend vulnerability repair

candidates to security analysts, which could reduce their limited

effort on fixing vulnerable functions. Our additional investigation

also shows that our VulRepair can accurately repair many real-

world vulnerabilities (e.g., Use After Free, Integer Overflow, NULL

Pointer Dereference). Our additional analysis discovers findings

that lead to many open research challenges for future studies.

The Novelty & Contributions of this paper are as follows:

• VulRepair, a T5-based Vulnerability Repair approach, aim-

ing to address various limitations of VRepair [13].

• An extensive evaluation of our VulRepairwith two competi-

tive baseline approaches (i.e., VRepair [13], CodeBERT [19]).

• An empirical evaluation of the impact of the pre-training

component for software vulnerability repairs.

• An empirical evaluation of the impact of tokenization tech-

niques for software vulnerability repairs.

• An ablation study to investigate the contribution of each

component of our VulRepair approach.

Paper Organization. Section 2 describes the problem definition

and the limitations of prior work. Section 3 presents our VulRe-

pair approach. Section 4 presents the experimental setup, while

Section 5 presents the results. Section 6 presents additional discus-

sion. Section 7 presents the related works. Section 8 discloses the

threats to validity. Section 9 draws the conclusions.

2 BACKGROUND & PROBLEM MOTIVATION

Automated Vulnerability Repair (AVR) can be formulated as a Neu-

ral Machine Translation (NMT) task [61]. Formally speaking, the

objective of an NMT-based AVR model aims to learn the mapping

between a vulnerable function 𝑋𝑖 and a vulnerability repair 𝑌𝑖
(i.e., the repair version of 𝑋𝑖 ). In particular, a NMT-based model

is composed of Encoder layers and Decoder layers, where the En-

coder takes a sequence of code tokens as input to map a vulnerable

function 𝑋𝑖 = [𝑥1, ..., 𝑥𝑛] into a fixed-length intermediate hidden

state 𝐻 = [ℎ1, ..., ℎ𝑛]. Then, the decoder takes the hidden state

vector 𝐻 as an input to generate the output sequence of tokens

𝑌𝑖 = [𝑦1, ..., 𝑦𝑚]. We note that 𝑛 (i.e., the length of the input se-

quence) and𝑚 (i.e., the length of the output sequence) can be dif-

ferent. To optimize the mapping, the parameters of the NMT-based

model are updated using the training dataset with the following

equation to maximize the conditional probability:

𝑝 (𝑌𝑖 | 𝑋𝑖 ) = 𝑝 (𝑦1, ..., 𝑦𝑚 | 𝑥1, ..., 𝑥𝑛) =
𝑚∏

𝑖=1

𝑝 (𝑦𝑖 | 𝐻,𝑦1, ..., 𝑦𝑖−1)

Previously, Recurrent Neural Networks (RNNs) [47] are widely

used as a NMT model for various SE tasks, e.g., RNN-based auto-

mated program repair approaches in SequenceR [14] and Tufano et

al. [53]. As the length of source code grows, RNN-based models

suffer from long-term dependencies among the input tokens, mak-

ing the RNN-based models forget some past information for a long

sequence of tokens (which is common in source code).

A Transformer-based NMT model, introduced by Google Brain

[54], is an Encoder-Decoder architecture with the self-attention

mechanism. Unlike RNNs, Transformers do not necessarily pro-

cess the sequence of tokens in a sequential order. Instead, the self-

attention mechanism provides a context vector for any position

in the input sequence (i.e., the context vector is used to provide

a weight of the tokens that the model should pay attention to),

allowing the Transformer-based NMT architecture to be more accu-

rate than RNN-based NMT architecture. Therefore, Chen et al. [13]

proposed VRepair [13] (accepted at IEEE TSE 2022), which is a
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Transformer-based NMT approach for automated vulnerability re-

pair, aiming to address various limitations of RNN-based NMT

approaches for automated program repairs [14, 53]. Specifically,

VRepair consists of the following three steps:

Step 1: Code Representation. For an input vulnerable function,

VRepair first leverages a word-level Clang tokenizer with a copy

mechanism to tokenize a C function into a sequence of tokens. Then,

a word embedding layer is used to generate a vector representation

of each token in the sequence to capture the semantic information

among the input tokens. Then, an absolute positional encoding

layer is used to generate another vector representation of the same

sequence that considers positional information among the input

tokens. Finally, the two vector representations are added together

to form the final code representation which will be used as the

input vector of the encoder-decoder model.

Step 2: An Encoder-Decoder Transformer. Given the in-

put vectors, VRepair leverages an encoder-decoder Transformer

model [54] to generate vulnerability repairs. The representation

first goes through a 6-layer Transformer encoder. Then, the output

vector of the last Transformer encoder is fed to each of the six Trans-

former decoders. The output vector of the last decoder then goes

through a linear layer with a softmax activation to obtain the final

probability distribution of vocabulary used for repair generation.

Step 3: Beam Search for Repair Generation.Given the output

vector of the Transformer decoder, VRepair then uses the beam

search algorithm to generate 50 vulnerable repair candidates. How-

ever, there exist three major technical limitations.

Limitation 1 : VRepair is trained on a small bug-fix cor-

pus of 23,607 C/C++ functions, which may generate subopti-

mal vector representations. The quality of vector representation

heavily relies on the language models of code being used. For the

VRepair approach, Chen et al. [13] leverage a transfer learning

technique in which VRepair is first pre-trained on a labeled bug-

fix corpus to generate a vector representation, which is fed into a

Transformer model. Then, the Transformer model is fine-tuned on

the vulnerability dataset to perform vulnerability repairs. However,

their pre-training data contains a limited number of C/C++ func-

tions. Thus, the pre-trained model of VRepair may not generate the

most meaningful vector representation of the source code.

Limitation 2 : VRepair leverages the word-level tokeniza-

tion and the copy mechanism to handle Out-Of-Vocabulary

(OOV), limiting its ability to generate new tokens never ap-

pear in a vulnerable function but newly introduced in the

vulnerability repair. Hindle et al. [22] found that source code is

far more natural and repetitive than natural languages. Unlike in

natural language, software developers are free to create any tokens

and can make them arbitrarily complex [27], leading to excessively

large vocabulary size. Karampatsis et al. [27] raise concerns that

statistical language models of source code often suffer from large

vocabularies and Out-Of-Vocabulary (OOV) issues, which could

severely affect the performance of the neural language models of

source code. Therefore, VRepair overcomes the OOV problem by

using word-level tokenization with a copy mechanism [64]. The

copy mechanism aims to directly copy/reuse a rare token from the

input sequence to the output sequence [64]. However, the word-

level tokenization and the copy mechanism cannot reuse tokens

that never appear in the vulnerable functions to the vulnerability

repairs, limiting its ability to generate new code tokens.

Limitation 3 : VRepair leverages a Vanilla Transformer

(i.e., a basic Encoder-Decoder Transformer architecture)

which uses an absolute positional encoding, limiting the abil-

ity of its self-attention mechanism to learn the relative posi-

tion information of code tokens within the input sequences.

In Step 1 , VRepair leverages an absolute positional encoding layer

to capture the position information (i.e., the position ID) of tokens

used by the Transformer model in Step 2 . This means that VRepair

(the vanilla version of Transformer) requires an additional represen-

tation of absolute positions (i.e., the position ID in a sequence) to its

input tokens to be added to the VRepair model. However, such abso-

lute position information is not efficiently used in the self-attention

mechanism [46], limiting the ability of its self-attention mechanism

to be fully aware of the position of each token in a sequence. Such

limitation could make the VRepair approach pay attention to in-

correct code tokens (e.g., parenthesis instead of variable names),

leading to inaccurate generation of vulnerability repairs.

3 VULREPAIR: A T5-BASED VULNERABILITY
REPAIR APPROACH

In this section, we present our VulRepair architecture, which is a

T5-based automated vulnerability repair approach.

Overview. Given a vulnerable function, in step 1 , we perform

subword tokenization using a Byte-Pairs Encoding (BPE) approach

based on a CodeT5 pre-trained language model [56] to produce

subword-tokenized functions (i.e., a list of subword code tokens

for each function). In Step 2 , we build a VulRepair model based

on a T5 architecture [42]. For each subword-tokenized function,

in Step 2a , VulRepair performs a word embedding to generate

an embedding vector for each token and combine it into a matrix.

Then, in Step 2b , the matrix is fed into the T5 encoder stack and

the output of the last T5 encoder is fed into each T5 decoder in

Step 2c . In Step 2d , the output of the T5 decoder stack is fed into

a linear layer with softmax activation to generate the probability

distribution of the vocabulary. Finally, in Step 3 , we leverage beam

search on top of the probability distribution of the vocabulary to

generate the final candidates as a prediction. Below, we describe

the details of each step.

3.1 Code Representation

The code representation of each localized vulnerable function in

our studied dataset consist of two main steps:

1 BPE Subword Tokenization. In step 1 , we leverage the

Byte Pair Encoding (BPE) approach [45] to perform subword-level

tokenization, which consists of two main steps. 1a generating

merge operations to determine how a word should be split, and

1b applying merge operations based on the subword vocabular-

ies. Specifically, BPE will split all code tokens into sequences of

characters and identify the most frequent symbol pair (e.g., the

pair of two consecutive characters) that should be merged into a

new symbol. BPE is an algorithm that will split rare tokens into

meaningful subwords and preserve the common tokens (i.e., will

not split the common words into smaller subwords) at the same

time. For instance, the function name, 𝐼𝑠𝑉𝑎𝑙𝑖𝑑𝑆𝑖𝑧𝑒 , will be split into
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Figure 1: An overview architecture of our VulRepair.

a list of subwords, i.e., ["IsValid", "Size"]. The rare word 𝐼𝑠𝑉𝑎𝑙𝑖𝑑𝑆𝑖𝑧𝑒

is split into two common words, 𝐼𝑠𝑉𝑎𝑙𝑖𝑑 and 𝑆𝑖𝑧𝑒 .

The use of BPE subword tokenization will help reduce the vocab-

ulary size when tokenizing various tokens because it will split rare

tokens into multiple subwords instead of adding the full tokens into

the vocabulary directly. In this paper, we apply a BPE tokenizer

that is pre-trained on CodeSearchNet (CSN) [23] and a C/C# corpus

extracted by Wang et al. [56]. The tokenizer is pre-trained in eight

different programming languages (i.e., Ruby, JavaScript, Go, Python,

Java, PHP, C, C#), which is suitable for tokenizing source code. To

fit the code generation task, we add "<s>" and "</s>" tokens to

represent the beginning of a sequence (BOS) and the end of a se-

quence (EOS). The "<pad>" token is used to pad the input sequence

into the same length if needed. In addition, we add four special

tokens (i.e., "<StartLoc>", "<EndLoc>", "<ModStart>", "<ModEnd>")

into the vocabulary as an extra vocab ID, so they will not be split

into subcomponents during tokenization. The use of pre-trained

language models of source code will ensure that the vector repre-

sentation being generated is more meaningful than VRepair, since

it is pre-trained on a larger code corpus (i.e., CodeSearchNet+C/C#).

In addition, the use of BPE will ensure that new identifiers that

never appear in the vulnerable functions can be generated in the

vulnerability repairs [52].

2a Word Embedding. Source code consists of multiple tokens

where the meaning of each token heavily relies on the context

(i.e., surrounding tokens) and the position of each token in a func-

tion. Therefore, it is important to capture the code context and its

position within the function. The purpose of this step is to gener-

ate embedding vectors that capture the semantic meaning of code

tokens and their position within a function. For each sub-word

tokenized function, in Step 2a , we generate an [1x768] embedding

vector for each subword token and combine it into a matrix to rep-

resent the meaningful relationship between a given code token and

the other code tokens. To capture the semantic meaning of code

tokens, we leverage word embedding vectors that are pre-trained

on the same corpus as our pre-trained tokenizer discussed above.

To capture the position of each code token within the function,

our VulRepair leverages relative position embedding which will

be computed and added to key matrix and value matrix during

self-attention calculation.

3.2 VulRepairModel Architecture

VulRepair is a T5-based model [42] which starts with an encoder

stack and a decoder stack, and ends with a linear layer with softmax

activation.

2b An Encoder Stack. In Step 2b , a stack of twelve layers of

encoder blocks is implemented to derive the encoder hidden state

used by the decoders. Similar to original Transformer Encoder [54],

each encoder block starts with a Layer Normalization [9] where

the activation is only rescaled and no additive bias is applied [42].

Each encoder block consists of two subcomponents: a multi-head

self-attention layer with relative position encoding [46] followed

by a feed-forward neural network. Each subcomponent (i.e., self-

attention and FFNN) in each encoder has a residual connection

around it and it is followed by a layer normalization step [54].

The self-attention mechanism [54] computes the relevant scores

of each code token using the dot product operation where each

token interacts with itself and other tokens once. The self-attention

mechanism relies on three main vectors, Query, Key, and Value.

The Query is a representation of the current code token used to

score against all the other tokens based on their keys stored in the

Key vectors. The attention scores of each token are obtained by

taking the dot product between all of the Query vectors and Key

vectors. The attention scores are then normalized to probabilities

using the Softmax function to get the attention weights. Finally, the

Value vectors can be updated by taking the dot product between

the Value vectors and the attention weight vectors.

Different from VRepair that leverages an absolute positional

encoding layer with a word embedding layer to capture the posi-

tional information in the input sequence, we use a relative posi-

tional encoding to efficiently consider the representations of the

relative positions and the distances between tokens within the in-

put sequence (i.e., the relation-aware self-attention mechanism).

The self-attention used in our VulRepair is a scaled dot-product

self-attention with relative position encoding. The self-attention

operation is computed using four matrices, i.e., 𝑄 , 𝐾 ,𝑉 , and 𝑃 . The

relative positional information, 𝑃 , is supplied to the model as an

additional component to the Key matrix and Value matrix as fol-

lows: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = softmax(𝑄 (𝐾+𝑃 )𝑇√
𝑑𝑘

) (𝑉 + 𝑃), where 𝑃 is

an edge representation for the two inputs in dot-product operation

to determine the positional information between tokens. Different

938



VulRepair: A T5-Based Automated Software Vulnerability Repair ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

from absolute positional encoding that leverages a fixed embed-

ding for each position, the pairwise positional encoding produces a

different learned embedding according to the offset between the 𝐾

and 𝑄 in the self-attention operation. Therefore, it can effectively

capture the relative information among tokens.

To capture richer semantic meanings of the input sequence,

we use a multi-head mechanism to realize self-attention, which

allows the model to jointly attend to the information from dif-

ferent code representation subspaces at different positions. For

𝑑-dimension𝑄 , 𝐾 , and𝑉 , we split those vectors into ℎ heads where

each head has 𝑑
ℎ
-dimension. After all of the self-attention opera-

tion, each head will then be concatenated back again to feed into a

fully-connected feed-forward neural network including two linear

transformations with a ReLU activation in between. The multi-

head mechanism can be summarized by the following equation:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (head1, ..., headℎ)𝑊𝑂 , where ℎ𝑒𝑎𝑑𝑖

= Attention(𝑄𝑊
𝑄
𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊𝑉
𝑖
) and𝑊𝑂 is used to linearly project

to the expected dimension after concatenation.

2c A Decoder Stack. In Step 2c , a stack of twelve layers of

decoder blocks is implemented to generate the vulnerability re-

pairs based on the hidden states provided by the last encoder block.

Similar to original Transformer Decoder [54], each decoder block

starts with a Layer Normalization as in the encoder block. Each de-

coder block consists of three subcomponents: a masked multi-head

self-attention layer with relative position encoding, a multi-head

encoder-decoder self-attention with relative position encoding, and

a feed-forward neural network. Same as the encoder block, each

subcomponent in each decoder has a residual connection around

it and it is followed by a layer normalization step. The masked

self-attention is used during the training phase of our generation

models to restrict the model to predict the next token without at-

tending to the later context. Thus, the model can only attend to

previous tokens during the generation. This follows the situation of

the inference phase where the model will not have any later context

and can only attend to previous tokens during the generation.

2d Linear and Softmax Layer. The Linear layer is a fully

connected neural network that projects the vector produced by the

decoder stack into a larger logits vector with the number of cells

equals to the number of unique token in the vocabulary. Then, the

following Softmax layer transforms the value into a probability

distribution that adds up to one, which would be used to generate

the final output in Step 3 .

3.3 Vulnerability Repair Generation

Given the output of softmax probabilities, in Step 3 , we leverage

beam search to select multiple vulnerability repair candidates for an

input sequence at each timestep based on a conditional probability.

The number of repair candidates relies on a parameter setting called

BeamWidth 𝛽 . Specifically, the beam search selects the best 𝛽 repair

candidates with the highest probability using a best-first search

strategy at each timestep. The beam search will be terminated when

the EOS token (i.e., "</s>") is generated.

4 EXPERIMENTAL DESIGN

In this section, we present the motivation for our four research

questions, our studied dataset, and our experimental setup.

Table 1: Descriptive statistics of the studied dataset.

1st Qt. Median 3rd Qt. Avg.

#Tokens in Vul. Func. 138 280 593 586

#Repaired Tokens 12 24 48 55

CC. of Vul. Func. 3 8 19 23

CC: Cyclomatic Complexity

4.1 Research Questions

The key goal of this paper is to evaluate ourVulRepair and compare

it with two baseline approaches. Below, we present the motivation

for the following four research questions.

(RQ1) What is the accuracy of our VulRepair for gener-

ating software vulnerability repairs? Recently, Chen et al. [13]

proposed VRepair, an NMT-based automated vulnerability repair ap-

proach. However, as pointed out in Section 2, VRepair has three key

limitations, leading to inaccurate vulnerability repair generation.

To address these challenges, we propose our VulRepair approach.

Thus, we formulate this RQ to investigate the accuracy of VulRe-

pair when comparing to two competitive baseline approaches, i.e.,

VRepair (a Vanilla Transformer) [13] and CodeBERT (developed by

Microsoft Research) [19, 33].

(RQ2) What is the benefit of using a pre-training compo-

nent for vulnerability repairs? The quality of vector represen-

tation heavily relies on the language models of code being used.

As pointed out in Section 2, VRepair is trained on a bug-fix cor-

pus of 23,607 C/C++ functions. However, such a limited amount

of data could lead to a suboptimal vector representation of code

(i.e., Limitation 1 , pre-training). In contrast, our VulRepair lever-

ages a pre-trained language model of code that is pre-trained on

CodeSearchNet+C/C# [23, 56] with 8.35 million functions from 8 dif-

ferent Programming Languages (i.e., Ruby, JavaScript, Go, Python,

Java, PHP, C, C#). Thus, we formulate this RQ to investigate the

impact of the pre-training component on the accuracy of automated

vulnerability repair approaches.

(RQ3) What is the benefit of using BPE tokenization for

vulnerability repairs? As pointed out in Section 2, VRepair lever-

ages word-level tokenization with a copy mechanism. Such an

approach may not be able to handle vulnerability repairs that have

newly introduced tokens (i.e., Limitation 2 , OOV problems). Re-

cently, Karampatsis et al. [27] raise concerns that different tok-

enization approaches may have an impact on the accuracy of the

language models of source code. However, the impact of tokeniza-

tion approaches has not been investigated in the context of auto-

mated vulnerability repairs. Aligning with Karampatsis et al. [27],

we formulate this RQ to investigate the impact of the tokenization

component on the accuracy of vulnerability repair approaches.

(RQ4)What are the contributions of the components of our

VulRepair?OurVulRepair involves various key components (i.e,.

BPE+Pre-Training+T5). However, little is known about what are

the contributions of the components of our VulRepair and which

component contributes the most to the accuracy of our VulRepair.

Thus, we formulate this RQ to conduct an ablation study on the

variants of our VulRepair, where each component is altered to

others while having the same T5 architecture.

939



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung

4.2 Studied Dataset

In our experiment, we use the vulnerability repairs dataset, CVE-

Fixes [10] and Big-Vul [18], that contains 8,482 vulnerability fixes

(a pair of vulnerable C functions and vulnerable repairs). Table 1

presents the descriptive statistics of the experimental dataset.

To ensure a fair comparison with VRepair, we strictly follow

the replication package provided by Chen et al. [13] to pre-process

the experimental dataset. Each input sequence contains a special

tag that specifies the CWE type of the sequence. Each vulnerable

code snippet in the input sequences is labeled using the special

tags "<StartLoc>" and "<EndLoc>", where "<StartLoc> indicates the

beginning of the vulnerable code snippet, which will be ending

with the special tag "<EndLoc>". For the output labels, each repair

code snippet is represented as the special tags "<ModStart>" and

"<ModEnd>", where "<ModStart> indicates the beginning of the

vulnerable repair and non-vulnerable context, which will be ending

with the special tag "<ModEnd>". The main purpose of adding such

special tags to the tokenizer is to ensure that such special tags

will not be treated as regular code tokens and will not be split

by the tokenizer. Similarly, such special tags will help the model

to pay attention to the areas of vulnerable code snippets and the

vulnerability repair.

4.3 Experimental Setup

Split. Same as Chen et al. [13], we split the experimental dataset

into 70% of training, 10% of validation, and 20% of testing data.

Model Implementation of Vulnerability Repair. We build our

VulRepair approach on top of two deep-learning Python libraries,

i.e., Transformers [60] and PyTorch [16]. The Transformers library

provides API access to the transformer-based model architectures

and the pre-trained weight, while the PyTorch library supports the

computation during the training process (e.g., back-propagation

and parameter optimization).

Model Training of our VulRepair.We obtain the CodeT5 tok-

enizer and model pre-trained by Wang et al. [56] from the API of

the Transformers library. We use our training dataset to fine-tune

the pre-trained model to get suitable weights for our vulnerabil-

ity repair task. The model is fine-tuned on an NVIDIA RTX 3090

graphic card and the training time is around 5 hours.

In the training process, we use the cross-entropy loss (𝐻 (𝑝, 𝑞) =
−∑

𝑥 ∈X 𝑝 (𝑥) 𝑙𝑜𝑔 𝑞(𝑥)) to update the model and to optimize be-

tween each position in the predicted sequence and each position

in the ground-truth sequence where X is the set of classes (i.e.,

𝑋 is a set of possible tokens generated by the BPE tokenizer for

our approach and any NMT-based models like VRepair), 𝑝 is the

ground truth probability distribution, and 𝑞 is the predicted proba-

bility distribution. To obtain the best-fine-tuned weights, we use

the validation set to monitor the training process by epoch, and the

best model is selected based on the optimal loss value against the

validation set (not the testing set).

Hyper-Parameter Settings for Fine-Tuning. For the model ar-

chitecture of our VulRepair approach, we use the default setting of

CodeT5 [56], i.e., 12 Transformer Encoder blocks, 12 Transformer

Decoder blocks, 768 hidden sizes, and 12 attention heads. During

fine-tuning, the learning rate is set to 2e−5 with a linear schedule
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Figure 2: (RQ1) The experimental results of our VulRe-

pair and the two baseline comparisons for vulnerability re-

pairs. (↗) Higher % Perfect Predictions = Better.

where the learning rate decays linearly throughout the training pro-

cess. We use backpropagation with AdamW optimizer [31] which

is widely adopted to fine-tune Transformer-based models to update

the model and minimize the loss function.

5 EXPERIMENTAL RESULTS

(RQ1) What is the accuracy of our VulRepair for
generating software vulnerability repairs?

Approach. To answer this RQ, we evaluate the accuracy of vul-

nerability repair approaches using the percentage of perfect pre-

dictions (%Perfect Predictions). The %Perfect Predictions measures

the percentage of vulnerable functions that an approach can cor-

rectly generate a vulnerable repair that is exactly matched with

ground-truth data (i.e., a human-written vulnerable repair). Then,

we compare %Perfect Predictions of our VulRepair with the two

baseline approaches as follows:

(1) VRepair [13] uses a vanilla Encoder-Decoder Transformer

model [54] for vulnerability repairs. VRepair is first trained

on a labeled bug-fixing dataset and fine-tuned on a vulnera-

bility dataset to generate vulnerability repairs;

(2) CodeBERT [19] is an Encoder-only Transformer-basedmodel

that is pre-trained on a large codebase called CodeSearch-

Net [23], developed by Microsoft Research. CodeBERT con-

sists of twelve Transformer Encoder Blocks plus six layers

of Transformer Decoder for generation tasks. Mashhadi and

Hemmati [33] leverage CodeBERT for automated program

repair of Java bugs and present substantial improvement

over RNN-based models.

For each approach, we use the same experimental setup as Chen et

al. [13] to evaluate the accuracy of our approach and the baseline

approaches. Specifically, we leverage a beamwidth of 50 to generate

50 repair candidates for each vulnerable function in the testing

dataset. Therefore, the %Perfect Predictions can be computed as

the total number of correct predictions divided by the total number

of functions in the testing dataset.
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Figure 3: (RQ2) The experimental results of the ablation study

with six different models. (↗) Higher % Perfect Predictions

= Better.

Result. Figure 2 presents the experimental results of our VulRe-

pair and the two baseline approaches according to our evaluation

measures (i.e., %Perfect Predictions).

OurVulRepair achieves a Perfect Prediction of 44%,which

is 13%-21% more accurate than the baseline approaches. Fig-

ure 2 shows that CodeBERT achieves a Perfect Prediction of 31%,

while VRepair achieves a Perfect Prediction of 23%, indicating that

VulRepair is 13% (44% − 31%) and 21% (44% − 23%) better than

CodeBERT and VRepair respectively. The 91% accuracy improve-

ment over the VRepair [13] has to do with different improvements

of our VulRepair to address various limitations of VRepair [13],

i.e., using a pre-training model from a larger codebase (i.e., Code-

SearchNet+C/C# [23, 56] with 8.35 million functions from 8 differ-

ent Programming Languages) to generate more meaningful vector

representation (Limitation 1 ), using BPE tokenization to handle

Out-Of-Vocabulary (OOV) issues (Limitation 2 ), and using T5 ar-

chitecture that considers the relative position information in the

self-attention mechanism (Limitation 3 ). In contrast, VRepair [13]

leverages a word-level tokenization with a pre-trained model on a

bug-fix corpus of 23,607 C/C++ functions and a vanilla Transformer

(i.e., a default Transformer architecture).

(RQ2) What is the benefit of using a pre-training
component for vulnerability repairs?

Approach. To answer this RQ, we aim to investigate the impact

of the pre-training corpus component for vulnerability repairs. We

note that VRepair leverages a vanilla Transformer, which performs

model training in supervised learning (i.e., regular model training

with label datasets). Thus, the model training process of VRepair

is different from modern Transformer architectures like BERT and

T5. In contrast, our VulRepair leverages T5 which performs a pre-

training in unsupervised learning (i.e., labels are not required), i.e.,

the process of training a model for a general task (e.g., next word

prediction) with a very large dataset. Thus, we only conduct an

experiment of different pre-training corpus components with the

T5 and BERT architectures. Specifically, we extend our experiment

to systematically evaluate the following six variants of DL-based

vulnerability repair approaches, i.e., 3 pre-training corpora (PL/NL,

NL, No Pre-training) × 2 model architectures (T5, BERT).

44 %

35 %

VulRepair

  S
ub

w
or

d 
To

ke
ni
ze

r  

W
or

d−
le
ve

l T
ok

en
iz
er

0

10

20

30

40

50

34 %

23 %

VRepair

  S
ub

w
or

d 
To

ke
ni
ze

r  

W
or

d−
le
ve

l T
ok

en
iz
er

0

10

20

30

40

50

31 %

17 %

CodeBERT

  S
ub

w
or

d 
To

ke
ni
ze

r  

W
or

d−
le
ve

l T
ok

en
iz
er

0

10

20

30

40

50

Figure 4: (RQ3) The experimental results of various ap-

proaches with different tokenization techniques for vulnera-

bility repairs. (↗) Higher %Perfect Predictions = Better.

• T5 + PL/NL (our VulRepair): A T5 architecture that is

pre-trained on both Programming Languages and Natural

Language (PL/NL).

• T5 + NL: The original T5 architecture that is pre-trained on

NL only (e.g., Internet webpages).

• T5: A T5 architecture without pre-training.

• BERT + PL/NL (original CodeBERT): A BERT architecture

that is pre-trained on PL/NL.

• BERT + NL: The original BERT architecture that is pre-

trained on NL only (e.g., Internet webpages).

• BERT: A BERT architecture without pre-training.

Similarly, we evaluate the accuracy of these variants using the

same evaluation measure (i.e., % Perfect Predictions).

Result. Figure 3 presents the experimental results of the benefits

of using a large pre-training corpus for vulnerability repairs.

Regardless of the model architectures, the PL/NL-based

pre-training corpus improves the percentage of perfect pre-

dictions by 30%-38% for vulnerability repair approaches. Fig-

ure 3 shows that the PL/NL pre-training corpus improves %Perfect

Predictions by 30% (31% − 1%) for the BERT architecture and 38%

(44% − 6%) for the T5 architecture when they are trained on the

NL-only corpus (i.e., the original T5/BERT architecture provided

by the Transformer library). This finding highlights the substan-

tial benefits of the pre-training process on the larger codebase, i.e.,

CodeSearchNet+C/C# [23, 56] with 8.35 million functions from 8 dif-

ferent Programming Languages (i.e., Ruby, JavaScript, Go, Python,

Java, PHP, C, C#) for vulnerability repairs. Nevertheless, when

using the same PL/NL pre-training corpus, the T5 architecture

employed by our VulRepair still outperforms the BERT

architecture. Figure 3 shows that, when using the same PL/NL

pre-training corpus, the T5 architecture outperforms the BERT ar-

chitecture by 13% (44% − 31%), highlighting the substantial benefits

of the Text-to-Text Encoder-Decoder Transformer (T5) for vulnera-

bility repairs (i.e., code→code generation) over the Encoder-only

Transformer (like BERT), which could be more suitable for other

SE tasks (code→text) like code summarization.
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(RQ3) What is the benefit of using BPE
tokenization for vulnerability repairs?

Approach. To answer this RQ, we aim to investigate the impact of

the tokenization component for vulnerability repairs. To do so, for

each approach, we alter only the tokenizer for each of the vulnera-

bility repair approaches. Specifically, we extend our experiment to

systematically evaluate the following six variants of DL-based vul-

nerability repair approaches, i.e., 2 tokenizers (subword tokenizer

and word-level tokenizer) × 3 model architectures (VulRepair, Code-

BERT, VRepair).

• Subword Tokenizer + CodeT5 (our VulRepair): BPE tok-

enizer with a CodeT5 model.

• Word-level Tokenizer + CodeT5: Word-level tokenizer with

a CodeT5 model.

• Subword Tokenizer + Vanilla Transformer: BPE tokenizer

with a Encoder-Decoder Transformer model.

• Word-level Tokenizer + Vanilla Transformer (VRepair):

Word-level tokenizer with a Encoder-Decoder Transformer

model and a copy mechanism for the OOV problem.

• Subword Tokenizer + CodeBERT (Original CodeBERT):

BPE tokenizer with a CodeBERT model.

• Word-level Tokenizer + CodeBERT: Word-level tokenizer

with a CodeBERT model.

Finally, we evaluate the accuracy of these variants using the same

evaluation measure (i.e., % Perfect Predictions).

Result. Figure 4 presents the experimental results of the benefits

of using BPE tokenization for vulnerability repairs.

Regardless of the model architectures, the BPE subword

tokenization improves the percentage of perfect predictions

by 9%-14% for vulnerability repair approaches. Figure 4 shows

that the use of BPE subword tokenization improves %Perfect Predic-

tions by 9% (44%− 35%) for VulRepair, 11% (34%− 23%) for VRepair,

and 14% (31% − 17%) for CodeBERT. These results highlight the

substantial benefits of using BPE tokenization for vulnerability

repair approaches, addressing the Limitation 2 of VRepair [13].

Nevertheless, our approach (BPE+CodeT5) is still top-performing

for vulnerability repairs, which is 21% (44% − 23%) better than

VRepair.

(RQ4) What are the contributions of the
components of our VulRepair?

Approach. To answer this RQ, we aim to investigate the contribu-

tion of each component within VulRepair (Pre-training+BPE+T5)

by examining themodel accuracy of ourVulRepairwhen each com-

ponent is varied, comparing with a basic T5 (No Pre-training+Word-

level+T5). Specifically, we extend our experiment to systematically

evaluate the following four variants of T5-based vulnerability re-

pair approaches, i.e., 2 pre-training strategies (pre-training, no pre-

training) × 2 tokenizers (subword-level, word-level):

• Pre-training + BPE + T5 (VulRepair): A pre-trained T5

model with a BPE tokenizer.

• Pre-training + Word-level + T5: A pre-trained T5 model

with a word-level tokenizer.

• No Pre-training + BPE + T5: A non-pre-trained T5 model

with a BPE tokenizer.
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Figure 5: (RQ4) The ablation study result of VulRepair. (↗)

Higher %Perfect Predictions = Better.

• No Pre-training + Word-level + T5: A non-pre-trained T5

model with a word-level tokenizer.

Similarly, we evaluate the accuracy of these variants using the

same evaluation measure (i.e., % Perfect Predictions).

Result. Figure 5 presents the ablation study to evaluate the contri-

butions of the components of our VulRepair.

The pre-training component of ourVulRepair is themost

important component.Within our VulRepair, the pre-training

component contributes to 14% of the %Perfect Prediction. When

comparing Pre+BPE+T5 andNoPre+BPE+T5where the Pre-training

component is eliminated, we observe a performance decrease from

44% to 30%, accounting for 14%. Within our VulRepair, the BPE

component contributes to 9% of the %Perfect Prediction. When com-

paring Pre+BPE+T5 and Pre+Word+T5 where the BPE component

is changed to the word level, we observe a performance decrease

from 44% to 35%, accounting for 9%. Nevertheless, without a proper

design of T5 architecture for our VulRepair, the performance de-

creased from 44% to 1%. This finding highlights that designing an

NMT-based automated vulnerability repair approach is a challeng-

ing task, which requires a deep understanding of modern Trans-

former architectures to achieve the highest possible percentage of

perfect predictions.

6 DISCUSSION

In this section, we perform additional analysis to further discuss

the results of our VulRepair approach and provide some recom-

mendations for future researchers.

6.1 What Types of CWEs that Our VulRepair
Can Correctly Repair?

CWE (Common Weakness Enumeration) is a list of vulnerability

weaknesses in software that can lead to security issues with its

severity of risk, providing guidance to organizations and security

analysts to best secure their software systems. To better understand

the significance of our VulRepair on the practical usage scenar-

ios, we perform a further investigation to better understand the

Top-10 CWEs that can be correctly repaired by our VulRepair and
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Table 2: (Discussion) The % Perfect Predictions of our Vul-

Repair for the Top-10 Most Dangerous CWEs.

Rank CWE Type Name %PP Proportion

1 CWE-787 Out-of-bounds Write 30% 16/53

2 CWE-79 Cross-site Scripting 0% 0/1

3 CWE-125 Out-of-bounds Read 32% 54/170

4 CWE-20 Improper Input Validation 45% 68/152

5 CWE-78 OS Command Injection 33% 1/3

6 CWE-89 SQL Injection 20% 1/5

7 CWE-416 Use After Free 53% 29/55

8 CWE-22 Path Traversal 25% 2/8

9 CWE-352 Cross-Site Request Forgery 0% 0/2

10 CWE-434 Dangerous File Type - -

TOTAL 38% 171/449

the Top-10 most dangerous CWEs.1 The Top-10 most dangerous

CWEs are the most common and impactful issues experienced over

the previous two calendar years. Such weaknesses are dangerous

because they are often easy to find, exploit, and can allow adver-

saries to completely take over a system, steal data, or prevent an

application from working.

Our VulRepair can correctly repair 38% of the vulnerable

functions affected by the Top-10 most dangerous CWEs (see

Table 2). We find that VulRepair achieves %Perfect Predictions

as much as 53% for CWE-416 (Use After Free), 45% for CWE-20

(Improper Input Validation), and 33% for CWE-78 (OS Command In-

jection). Figure 6 shows that our VulRepair achieves 100% perfect

predictions for the following CWEs (i.e., CWE-755, CWE-706, CWE-

326, CWE-667, CWE-369, CWE-77, CWE-388, CWE-436, CWE-191).

However, %Perfect Predictions still vary from 0% to 100%, depend-

ing on the CWE types in the dataset. That means the CWE types

that achieve perfect predictions may not necessarily be the majority

of CWEs in the dataset. Thus, we further analyze the % perfect pre-

dictions according to the majority of the CWEs in the dataset. We

find that there exist many CWE types that our VulRepair cannot

correctly generate vulnerability repairs (e.g., CWE-639, CWE-354,

CWE-522) (see Figure 6). We find that these CWE types are rare in

our datasets with less than 5 functions, indicating that our VulRe-

pair still cannot accurately repair for some types of rare vulnera-

bilities. Thus, future researchers should further explore techniques to

handle rare vulnerabilities (i.e., the low proportion of vulnerabilities

in the training and testing dataset).

6.2 How Do the Function Lengths and Repair
Lengths Impact the Accuracy of Our
VulRepair?

Although our VulRepair can correctly generate a considerable

number of vulnerability repairs ( 745

1,706 ) for various types of CWEs,

there is a large number of 961 vulnerable functions that cannot be

correctly generated. Thus, we perform a further investigation to

analyze the accuracy of our VulRepair with respect to the repair

length and the function length.

1https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
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Figure 6: (Discussion) The %Perfect Predictions (y-axis) of

ourVulRepair according to each type of CWE (x-axis, sorted

by % perfect predictions and sorted by the majority of CWEs

in the dataset). Detailed statistics can be found in Appendix.

The accuracy of our VulRepair depends on the size of

the vulnerable functions and its difficulty to repair. Table 3

shows that our VulRepair is most accurate for vulnerable functions

that have less than 500 tokens and less than 20 repair tokens. Our

VulRepair achieves the %Perfect Prediction of 64%-77% for for

vulnerable functions with less than 500 tokens, but the %Perfect

Prediction is substantially decreased to 32% for vulnerable functions

with greater than 500 tokens. The performance decrease for large

functions (500+ tokens) has to do with the window size of the

T5 architecture (i.e., limited to 512 tokens). For any vulnerable

functions with greater than 512 tokens, such extra tokens will be

truncated and will not be processed and learned by the models,

leading to a negative impact on the accuracy of our VulRepair.

Thus, future researchers should further explore techniques that can

handle larger functions (i.e., the functions with more than 512 tokens).

In addition, the repair difficulty (measured by #repair tokens

in the vulnerability repair) is also impacting the accuracy of our

VulRepair. We find that our VulRepair achieves the %Perfect

Prediction of 63%-77% for vulnerable repairs with less than 10 repair

tokens, but the %Perfect Prediction is substantially decreased to

below 60% for vulnerable repairs with greater than 10 repair tokens.

Thus, future researchers should further explore techniques that can

handle difficult repairs (i.e., repairs with more than 20 repair tokens).

6.3 How Does the Complexity of the Input
Functions Impact the Accuracy of Our
VulRepair?

It is possible that highly-complex vulnerable functions may be more

difficult to generate repairs by our VulRepair than the others. Thus,

we further investigate the accuracy of our VulRepair for various

degrees of the complexity of the input functions. To do so, we

measure the program complexity using a Cyclomatic Complexity

measure. Cyclomatic Complexity (CC) is a quantitative measure

of the number of linearly independent paths through a program’s

source code.
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Figure 7: (Discussion) The accuracy of our VulRepair for

various ranges of the Cyclomatic Complexity of the input

vulnerable functions in the testing set. (↗) Higher % Perfect

Predictions = Better.

Table 3: (Discussion) The % Perfect Predictions of our VulRe-

pair according to the function length and the repair length.

Function Lengths (#Tokens)

0-100 101-200 201-300 301-400 401-500 500+

0-10 77% 64% 75% 76% 67% 32%

11-20 63% 56% 59% 43% 33% 32%

21-30 50% 55% 56% 65% 56% 33%

31-40 48% 53% 57% 42% 56% 15%

41-50 54% 61% 53% 45% 20% 30%

50+ 48% 24% 32% 28% 16% 6%
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OurVulRepair achieves a higher accuracy for less-complex

input functions than highly-complex input functions. Fig-

ure 7 presents the accuracy of ourVulRepair under different ranges

of Cyclomatic Complexity (CC). We find that when the input func-

tions are less complex (i.e., the CC is less than 20), our VulRe-

pair can achieve %PP of 53% and 46%, which are better than the

average accuracy (i.e., %PP of 44%). However, the accuracy of our

VulRepair merely achieves %PP of 29%, 24%, and 13% when the

input functions are more complex (i.e., the CC is higher than 20).

Thus, future researchers should further explore techniques that can

handle highly-complex functions to further improve the accuracy of

the NMT-based vulnerability repair models.

6.4 HowWell Can Our VulRepair Handle the
OOV Problem of Vulnerability Repairs?

To better understand how well can BPE handle the OOV problem of

vulnerability repairs, we perform a further investigation to analyze

the pairs of vulnerable function-repair where new tokens never

appeared in the vulnerable function but appear in the vulnerable

repairs (i.e., out-of-vocabulary). Among the 1,706 pairs in the testing

dataset, we find that 37% of them (627 pairs) have new tokens that

appear in the vulnerable repair, but never appeared in the vulnerable

function. This means that the OOV problem is accounting for 37%

of the testing dataset, indicating that the size of the OOV problems

is considerably large and important. Among the 627 pairs with OOV

problems, we find that 37% of the vulnerable functions ( 234
627

) can be
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Figure 8: (Discussion) The performance of our VulRe-

pairwith different values of beam size. (↗) Higher % Perfect

Predictions = Better.

correctly and automatically repaired by our VulRepair approach,

indicating that ourVulRepair can accurately generate vulnerability

repairs when new are introduced in the repair version. On the

other hand, VRepair which leverages the copy mechanism cannot

accurately generate any vulnerability repairs when new tokens

are introduced in the repair version, since the copy mechanism

cannot reuse tokens that never appear in the vulnerability function

to the vulnerability repairs. This finding highlights the importance

of using BPE to handle the OOV problem for vulnerability repairs.

Nevertheless, we find that the correct vulnerability repairs (37%)

often have new tokens ranging from 1 to 12 new tokens (avg=1.59),

while the incorrect vulnerability repairs (the remaining 63%) have

a relatively higher number of new tokens ranging from 1-100 new

tokens (avg=4.85). This finding confirms that the correct generation

of vulnerability repairs depends on its complexity and difficulty

(#new tokens). Thus, future researchers should further explore other

techniques to address the OOV problem for more difficult types of

vulnerability repairs.

6.5 HowWell Can Our VulRepair Generate
Perfect Repairs Given Different Values of
Beam Size?

To ensure a fair comparisonwith the previous VRepair approach [13],

we adopt a Beam Width 𝛽 = 50 that returns 50 repair candidates.

However, security analysts may spend a huge amount of effort

to manually inspect such a large number of 50 repair candidates,

which may hinder its adoption in practice. Similar to previous

works [15, 52], we further investigate the accuracy of our VulRe-

pair at the top-1 to top-5, and top-10 candidates, which is more

practical and requires less manual inspection.

Figure 8 presents the accuracy of our VulRepair under differ-

ent values of Beam Width (𝛽). When analyzing the top-1 accuracy

(Beam Width 𝛽 = 1), we find that our VulRepair is still accurate,

achieving a %PP of 30%. This means that our VulRepair can cor-

rectly repair 513 vulnerable functions out of 1,706 testing instances

when only evaluating the best repair candidate recommended by

VulRepair. On the other hand, when increasing the 𝑘 candidates,

the top-𝑘 accuracy of our VulRepair still increased, e.g., 41% to

44% when changing the 𝑘 candidates from 5 to 50.
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7 RELATED WORK

NMT-based APR. Researchers proposed to leverage various Neu-

ral Machine Translation (NMT) approaches for Automated Program

Repair (APR). For example, Chen et al. [14] proposed SequenceR,

which is a vanilla version of Transformer with copy mechanism

to handle OOV. Jiang et al. [24] proposed CURE, which is a GPT

architecture [41], pre-training on source code. Mashhadi and Hem-

mati [33] leveraged CodeBERT [19] to repair Java bugs automat-

ically. Tufano et al. [53] leveraged an RNN-based NMT model to

automatically generate repairs in the context of code review. Lutel-

lier et al. [32] proposed CoCoNuT, which is a CNN-based NMT

model to generate bug-fixes. Li et al. [29] proposed DLFix, which

is a tree-based RNN architecture to generate bug-fixes. Thong-

tanunam et al. [52] proposed AutoTransform, which is a vanilla

version of Transformer with a BPE tokenization to handle OOV.

While NMT-based APR shares a similar concept of using NMT for a

Code→Code task, NMT-based APR approaches [14, 24, 29] are de-

signed to learn to generate a patch for bug-fixing purposes, which

may not be related to other specific types of bugs like software

vulnerabilities. In addition, such NMT-based APR approaches are

designed to generate a patch that satisfies test cases.

Different from NMT-based APR, VulRepair aims to automati-

cally generate vulnerability repairs that are exactly matched with

the human-written repairs (i.e., the fix version).

NMT-basedAVR. Researchers proposed NMT-based Automated

Vulnerability Repair (AVR) approaches. For example, Chen et al. [13]

proposed VRepair which leverages a word-level tokenizer and a

vanilla Transformer model. Similar to VRepair, Chi et al. [15] pro-

posed SeqTrans which relies on the same components as VRepair.

Both VRepair and SeqTrans leverage a word-level tokenizer, how-

ever, Chen et al. [13] leverage the copy mechanism and Chi et

al. [15] leverage code normalization to solve the OOV problem.

Different from NMT-based AVR, our VulRepair is the first to

leverage a T5 architecture with BPE and the pre-training of a large

code corpus for automated vulnerability repairs. Our systematic

and comprehensive evaluations also demonstrate the substantial ac-

curacy improvement of our approach to address various limitations

of VRepair [13], highlighting the significant advancement of the

NMT-based Automated Vulnerability Repair literature. Additional

investigation in the Discussion section also provide recommenda-

tions for future researchers.

8 THREATS TO VALIDITY

As for any empirical study, there are various threats to the validity

of our results and conclusions.

Threats to internal validity are related to the degree to which our

study minimizes systematic error. Our VulRepair consists of vari-

ous hyperparameter settings (i.e., number of hidden layers, number

of attention heads, and learning rate). Prior studies raise concerns

that different hyperparameter settings may have an impact on the

evaluation results, especially, for defect prediction models [49, 51].

However, finding an optimal hyperparameter setting can be very ex-

pensive given the large search space of the Transformer architecture.

Instead, the goal of our work is not to find the best hyperparameter

setting, but to fairly compare the accuracy of our approach with

the existing baseline approaches. Thus, the accuracy reported in

the paper is served as a lower bound of our approach, which can

be even further improved through hyperparameter optimization.

To mitigate this threat, we report the hyperparameter settings in

the replication package to aid future replication studies.

Threats to external validity are related to the degree to which

our findings can be generalized to and across other vulnerabili-

ties and projects. Our VulRepair approach is evaluated on the

CVEFixes [10] and Big-Vul [18] corpus, which consists of 8,482 vul-

nerability repairs from 180+ different CWEs. However, the results

of VulRepair do not necessarily generalize to other CWEs and

other datasets. Thus, other datasets can be explored in future work.

Recently, Liu et al. [30] suggested that the accuracy of an au-

tomated program repair approach should not be solely evaluated

based on a perfect match. Instead, other measures should also be

considered, e.g., the number of semantically correct repairs and

the number of plausible patches. However, these two measures re-

quire test cases for evaluating whether the repairs can successfully

pass the test cases or not. Unfortunately, there exists no test cases

available in the experimental dataset that we used in this paper.

Thus, both measures cannot be evaluated. Nevertheless, future re-

searchers should create new vulnerability repair datasets where

such repairs are reproducible and test case information is available.

9 CONCLUSION

In this paper, we propose VulRepair, a T5-based automated soft-

ware vulnerability repair approach. Through an extensive evalua-

tion, we conclude that ourVulRepair is considerably 13%-21%more

accurate than VRepair and CodeBERT, highlighting the substantial

advancement of NMT-based Automated Vulnerability Repairs. Im-

portantly, our VulRepair can accurately repair as many as 745 out

of 1,706 real-world well-known vulnerabilities. Importantly, we find

that our VulRepair can correctly repair 38% of the vulnerable func-

tions related to the Top-10 most dangerous CWEs, e.g., CWE-416

(Use After Free), CWE-20 (Improper Input Validation), and CWE-

78 (OS Command Injection), demonstrating the practicality and

significance of our VulRepair for generating vulnerability repairs,

helping under-resourced security analysts on fixing vulnerabilities.

Our additional analysis discovers important findings, leading

to many open research challenges that future researchers should

explore (e.g., to handle larger functions, to handle rare types of

vulnerabilities, to handle difficult repairs with many new tokens).
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