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Abstract—Deep learning-based vulnerability prediction
approaches are proposed to help under-resourced security
practitioners to detect vulnerable functions. However, security
practitioners still do not know what type of vulnerabilities
correspond to a given prediction (aka CWE-ID). Thus, a novel
approach to explain the type of vulnerabilities for a given
prediction is imperative. In this paper, we propose VulExplainer,
an approach to explain the type of vulnerabilities. We represent
VulExplainer as a vulnerability classification task. However,
vulnerabilities have diverse characteristics (i.e., CWE-IDs) and
the number of labeled samples in each CWE-ID is highly imbal-
anced (known as a highly imbalanced multi-class classification
problem), which often lead to inaccurate predictions. Thus,
we introduce a Transformer-based hierarchical distillation for
software vulnerability classification in order to address the highly
imbalanced types of software vulnerabilities. Specifically, we split
a complex label distribution into sub-distributions based on CWE
abstract types (i.e., categorizations that group similar CWE-IDs).
Thus, similar CWE-IDs can be grouped and each group will
have a more balanced label distribution. We learn TextCNN
teachers on each of the simplified distributions respectively,
however, they only perform well in their group. Thus, we build
a transformer student model to generalize the performance
of TextCNN teachers through our hierarchical knowledge
distillation framework. Through an extensive evaluation using
the real-world 8,636 vulnerabilities, our approach outperforms
all of the baselines by 5%–29%. The results also demonstrate that
our approach can be applied to Transformer-based architectures
such as CodeBERT, GraphCodeBERT, and CodeGPT. Moreover,
our method maintains compatibility with any Transformer-based
model without requiring any architectural modifications but
only adds a special distillation token to the input. These results
highlight our significant contributions towards the fundamental
and practical problem of explaining software vulnerability.

Index Terms—Software vulnerability, software security.

I. INTRODUCTION

AS the number of discovered software vulnerabilities hit
an all-time high of 20k in 2021 reported by National Vul-

nerability Database (NVD) [54], large software companies are
spending more and more funds mitigating the security threats by
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granting bug bounties [24], [27], [49]. Software vulnerabilities
are system weaknesses and glitches that can be further exploited
by attackers to steal sensitive data or spread ransomware. Back
in 2000, NVD has been created by the U.S. government to ana-
lyze and track new vulnerabilities to mitigate software security
breaches. Another community-developed Common Weakness
Enumeration (CWE) [13] list consists of multiple CWE-IDs
representing various categories of vulnerability, where some
CWE-IDs are easier to be exploited than others, hence requiring
higher priority to be resolved. For instance, the widespread
Log4j flaw inside an open-source Java library provided by the
Apache Software Foundation was found at the end of 2021.
Such flaw includes different CWE-IDs such as CWE-20 (i.e.,
improper input validation) and CWE-89 (i.e., improper neutral-
ization of special elements used in an SQL command) with a
high likelihood of exploitation [82]. Thus, it is important to
recognize the type of vulnerability for a vulnerable program that
enables security engineers to prioritize accordingly to focus on
the more severe ones.

Various Deep Learning-based software vulnerability predic-
tion (SVP) methods have been proposed that can even detect the
vulnerabilities down to line-level [21], [28]. Nevertheless, those
models can not identify what type of vulnerability is detected.
The vulnerability type (i.e., CWE-ID) further explains the de-
tected vulnerable code and helps security engineers understand
and categorize the detected vulnerability to propose repairs or
mitigation. Thus, software vulnerability classification (SVC)
is an important task that supports SVP models by providing
more explanation of detected vulnerable code, which could
assist end users to comprehend the detected vulnerabilities.
Recently, several automated SVC approaches have been pro-
posed to identify the CWE-IDs given a vulnerable program
or a vulnerability description using Machine Learning/Deep
Learning models. In particular, transformer-based models were
leveraged to achieve superior performance through the self-
attention mechanism [18], [71]. However, due to the complexity
and the nature of the process to collect and label software
vulnerabilities wherein some popular vulnerabilities are highly
reported while other unpopular ones are rarely reported, the
distribution of different software vulnerabilities is highly im-
balanced with some highly and rarely occurring CWE-IDs in
real-world datasets. For instance, CWE-119 is a common buffer
overflow vulnerability that has 2,127 samples in our experimen-
tal dataset, while CWE-94 is a more specific vulnerability about
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Code Injection that only has 11 samples. Such an imbalanced
nature of CWE-IDs leads to a long-tailed label distribution that
hinders the learning process of deep learning and transformer-
based models, where models could learn too well on the specific
CWE-IDs while performing poorly on other CWE-IDs.

Learning from a long-tailed label distribution has been
widely studied in computer vision [8], [16], [44], [47], notably
Focal Loss [44] and Logit Adjustment [47] methods. Although
those methods have been demonstrated to couple well with
CNNs and vision data, their direct application to transformer-
based SVC does not perform satisfactorily. As shown in Table
III, focal loss and logit adjustment do not improve transformer-
based SVC in most cases. Additionally, some recent works have
proposed to group data by label frequencies and use a balanced
group softmax [41] or distillation [76] to learn a better model
inspired by knowledge distillation [29] that enables transferring
the knowledge from one or more teacher models to a student
model. Again, although these approaches work to some extent
for vision data and CNNs, they cannot improve transformer-
based long-tailed SVC as shown in Table II (see the results
for BAGS and LFME). We conjecture that grouping by label
frequencies helps to mitigate the imbalance in each group. This
operation in return creates groups of less similar CWE-IDs,
hence making it harder to train a good teacher model for each
group.

The goal of this work is to explain the type of vulnerabil-
ities for detected vulnerable functions by classifying CWE-
IDs. Thus, we need to address the aforementioned long-tailed
label distribution that occurs in the SVC problem. To this end,
we propose a hierarchical distillation approach based on the
characteristics of vulnerabilities. Specifically, the CWE com-
munity has developed hierarchical CWE abstract types [14] to
organize complex and diverse CWE-IDs by grouping similar
CWE-IDs based on their characteristics. In practice, such cat-
egorization is more readable and understandable for security
analysts. Moreover, each CWE abstract type becomes a more
balanced distribution consisting of similar CWE-IDs as shown
in Fig. 2, which enables us to learn a better model. Based on
this observation, we propose a novel hierarchical distillation
approach that is based on the hierarchical grouping of CWE-IDs
to overcome the highly imbalanced problem. Particularly, we
split a long-tailed label distribution Y into multiple distributions
where each distribution corresponds to a specific CWE abstract
type (i.e., YBase, YCategory , YClass, YV ariant, or YDeprecated)
as depicted in Fig. 4. Our grouping strategy leads to multiple
more balanced label distributions that consist of CWE-IDs with
similar characteristics in each group, hence they are simpler for
a DL model to learn from. Therefore, for each group corre-
sponding to a CWE abstract type, we train a TextCNN teacher
[37] to predict the CWE-IDs in this CWE abstract type. Addi-
tionally, to save up the computation and enable the training of
the teachers simultaneously, we tie the backbone of the teachers,
hence the teachers are only different in the classification heads
for predicting the CWE-IDs belonging to their CWE abstract
type. Finally, we invoke a transformer-based student to distill
from multiple teachers, allowing it to generalize to the entire
label distribution. Note that the idea of distilling a transformer

from a different CNN teacher has been realized in the DeIT
approach [68] for vision data. However, in our approach, we
hierarchically distill from multiple TextCNN teachers based on
the hierarchy of source code data.

Through an extensive evaluation of our VULEXPLAINER us-
ing the Big-Vul dataset [19] consisting of 3,754 vulnerabilities
from 348 large-scale open-source software projects spanning
from 2002 to 2019, we address the following three research
questions:

• (RQ1) What is the accuracy of our VULEXPLAINER for
classifying software vulnerabilities (i.e., CWE-IDs)?
Results. Our VULEXPLAINER method achieves an accu-
racy of 65%–66% when applying to different transformer-
based models, i.e., GraphCodeBERT [26], CodeBERT
[20], and CodeGPT [46], which is 5%–29% more accurate
than other baseline approaches.

• (RQ2) Does VULEXPLAINER approach outperform
loss-based methods for imbalanced data?
Results. Our approach outperforms the two loss-based
methods and achieves the best performance for Graph-
CodeBERT, CodeBERT, and CodeGPT models.

• (RQ3) What is the contribution of the components
of our VULEXPLAINER?
Results. The ablation study reveals that our hierarchical
grouping strategy achieves better performance than the
grouping strategy that only focuses on label frequency.
Furthermore, our TextCNN teacher models achieve
advanced performance while being more efficient
(requiring fewer parameters) than transformer-based
teachers. Last but not least, the soft distillation (our
method) that distills soft knowledge (probability
distributions) is better than hard distillation that distills the
hard predictions (one-hot predictions) of teacher models.

Novelty & Contributions. To the best of our knowledge, the
contributions of this paper are as follows:

• VULEXPLAINER, a hierarchical software vulnerability dis-
tillation approach including two phases aiming to address
the imbalanced data issue of SVC: (i) a novel data di-
vision approach to split a label distribution into multiple
more balanced sub-distributions consisting of more sim-
ilar CWE-IDs based on the hierarchical nature of CWE-
IDs; (ii) a distillation approach based on the self-attention
mechanism of transformer models to hierarchically distill
knowledge from multiple TextCNN teachers based on the
hierarchy of source code data.

• An extensive evaluation by comparing our VULEXPLAINER

with seven competitive baseline approaches mentioned in
Section IV-B.

• An empirical evaluation by comparing our VULEXPLAINER

with two advanced loss-based methods (i.e., focal loss and
logit adjustment) proposed for the imbalanced data issue.

• A complete ablation study to investigate each step of our
VULEXPLAINER approach.

Paper Organization. Section II describes the background and
problem statement. Section III presents our VULEXPLAINER

framework. Section IV presents the experimental setup and
results. Section V presents an additional discussion. Section VI
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presents the related works. Section VII discloses the threats to
validity. Section VIII draws the conclusions.

II. BACKGROUND & PROBLEM STATEMENT

A. Background

Common Weakness Enumeration (CWE) is a community-
developed list of software and hardware weaknesses and
vulnerabilities. CWE provides a hierarchical categorization of
software vulnerabilities where each CWE-ID determines a vul-
nerability type and each CWE abstract type determines a group
of similar vulnerability types. Such a hierarchical categorization
serves as a common language of software vulnerabilities, that
helps security analysts identify and understand security flaws
existing in software.

Recently, line-level software vulnerability prediction (SVP)
methods [21], [28], [51], [57], [73] are proposed to detect
vulnerable lines in source code that may save security analysts’
efforts to locate vulnerabilities among a large number of codes.
For instance, in Fig. 1, line-level SVP methods can detect the
9th line as a vulnerable line. However, SVP models can not
provide further information such as CWE-IDs to explain the
detected vulnerabilities. Therefore, such a lack of explainability
concerns could hinder the adoption of SVP methods and make
security analysts not fully understand the detected vulnerabili-
ties, leading to more time spent on the security inspection [10],
[32], [33], [36], [45], [56], [60], [64], [65], [66].

Therefore, software vulnerability classification (SVC) meth-
ods are proposed to classify vulnerable code into different
CWE-IDs and explain the detected vulnerability [72] as shown
at the bottom of Fig. 1. With the explanation provided by
SVC methods, security analysts can understand more about
vulnerability prediction by SVP models and efficiently suggest
corresponding repair or mitigation strategies.

However, existing SVC methods still encounter an unre-
solved data imbalance issue. For instance, Das et al. [18] lever-
aged data augmentation [74] in their experiments but it did not
further improve the performance of their transformer model.
Wang et al. [72] also experienced the data imbalance issue and
only focused on the top 10 frequency CWE-IDs in their exper-
iment to mitigate the data imbalance, which hinders the model
to identify rare vulnerability types. Our experimental dataset is
also imbalanced; the samples per class range from 2127 to 10.
Some approaches such as logit adjustment [47] and focal loss
[44] were proposed in the vision domain to help DL models
combat imbalanced label distribution for image classification
tasks. Nevertheless, those methods from the vision domain have
limited effect on improving transformer models for the SVC
task as shown in Table III.

To combat the imbalanced label distribution, we propose to
simplify one complex/imbalanced data distribution into multi-
ple simple/balanced data distributions based on the hierarchical
characteristics of software vulnerability data (i.e., CWE ab-
stract types) mentioned early this section. We then leverage a
teacher-student knowledge distillation method to benefit from
the divided balance distributions as detailed in Section III. The
studied data set used in this paper was crawled from the CVE

Fig. 1. A real-world vulnerability example of CWE-787 [1]. The upper part
shows the vulnerability prediction generated by line-level SVP models while
the lower part presents the same prediction with an extended explanation
provided by the SVC approaches to illustrate the detected vulnerability.

Fig. 2. Statistics that measure the imbalance of grouped and ungrouped data
distributions.

database by Fan et al. [19] where the information of CWE-
IDs and CWE abstract types have been labeled by human
experts. Below, we introduce CWE abstract types, followed
by an overview of the teacher-student knowledge distillation
method.

1) CWE Abstract Types: CWE abstract types can be as-
sessed through five dimensions that help characterize weak-
nesses within the Common Weakness Enumeration (CWE)
system. These dimensions include behavior, which refers to
observable actions or patterns associated with weakness. The
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property focuses on specific attributes or qualities related to
weaknesses. The technology identifies weaknesses that are spe-
cific to certain technologies or platforms. Language pertains to
weaknesses that are specific to programming languages. Finally,
resource relates to weaknesses that impact system resources.

In this paper, we consider five common CWE abstract types,
namely Class, Base, Category, Variant, and Deprecated, each
providing valuable insights into different aspects of weaknesses
within the Common Weakness Enumeration (CWE) system.
The class represents weaknesses described in a highly abstract
manner, devoid of specific language or technology references.
These weaknesses are typically characterized by 1 or 2 dimen-
sions, including behavior, property, and resource. Base weak-
nesses, on the other hand, are described in an abstract fashion,
but with sufficient details to infer specific detection and preven-
tion methods. They offer a level of specificity between Class
and Variant weaknesses. Base-level weaknesses encompass 2
or 3 dimensions, incorporating aspects such as behavior, prop-
erty, technology, language, and resource. Category serves as a
structural element that aids users in identifying weaknesses that
share common characteristics, facilitating efficient grouping
and classification. Deprecate encompasses all deprecated CWE-
IDs. Lastly, Variant weaknesses are linked to specific types of
products, often associated with particular languages or tech-
nologies. These weaknesses offer a higher level of specificity
compared to Base weaknesses and are described in terms of 3
to 5 dimensions, encompassing behavior, property, technology,
language, and resource. We refer interested readers to the offi-
cial CWE documentation [14] for concrete examples of these
abstract types.

2) Knowledge Distillation: By grouping similar CWE-IDs
based on CWE abstract types, similar CWE-IDs are grouped
and the data becomes more balanced. Consequently, it becomes
possible to train a collection of more precise CWE-ID classifi-
cation models, with each model dedicated to a specific CWE
abstract type. However, their scope is limited to identifying
CWE-IDs within their respective abstract types for which they
were trained. Consequently, to extend the performance of these
models to cover all CWE-IDs across various abstract types, we
employ knowledge distillation to construct a student model.

Knowledge distillation is a procedure wherein knowledge
is transferred from a single model or a set of models, often
referred to as teacher models, to a single model known as
the student model. The student model leverages the collective
knowledge from the specialized models, enabling it to general-
ize and provide an accurate classification for CWE-IDs across
different abstract types. Knowledge distillation can be seen as a
type of model compression technique, originally introduced by
Bucilua [6].

In particular, we leverage response-based knowledge that
focuses on the final output layer of the teacher model. The
underlying assumption is that the student model will acquire
the capability to emulate the predictions made by the teacher
model. To achieve this, we employ a distillation loss function
that measures the disparity between the logits of the student
and teacher models. By minimizing this loss during training, the
student model gradually improves its ability to make predictions

that align with those of the teacher model. We illustrate more
technical details in Section III-C.

Subsequently, we present an additional challenge encoun-
tered in the CWE-ID classification task, supported by a pre-
liminary analysis. We then proceed to outline our proposed
approach for mitigating this challenge.

B. Challenge & Motivation

Prior studies have proposed methods for automatically classi-
fying CWE-IDs based on textual vulnerability descriptions [3],
[50], [63]. These approaches typically involve models learning
to recognize CWE-IDs based on keywords acquired during
training. However, our objective is to assist software developers
in identifying CWE-IDs at the early stages of software devel-
opment, where vulnerability descriptions may not be available.
Consequently, we aim to develop models that can make pre-
dictions solely based on the source code input, which poses a
more challenging task. This is because the same keywords, such
as variable or function names, can be associated with different
CWE-IDs depending on the context.

Large language models (LLMs) such as ChatGPT [55] and
BARD [25] have demonstrated their ability to conduct code
analysis and generate boilerplate code. However, we have reser-
vations regarding the effectiveness of large language models
(LLMs) such as ChatGPT and BARD in correctly identifying
CWE-IDs given source code input, as this task is domain-
specific and related to software security analysis. To validate
our suspicions, we conducted a preliminary analysis to explore
the capabilities of LLMs in this particular context. The primary
objective of this analysis was to investigate whether LLMs can
accurately and effectively identify CWE-IDs based on source
code input.

1) Premilinary Analysis: For our investigation, we ran-
domly selected 10 samples from our testing dataset, which
encompassed the top-10 dangerous CWE-IDs in 2022 [15],
including CWE-787, CWE-79, CWE-20, CWE-125, and CWE-
416. In our analysis, we utilized ChatGPT and BARD as our ex-
amples. To ensure that both ChatGPT and BARD comprehend
our task, we initially prompted them to specify the context such
as (1) the format of input prompts, (2) the desired generated
output, and (3) the programming language under consideration.
Additionally, we provided a list of all the CWE-IDs of interest
to confine the scope of the analysis.

The findings of our preliminary analysis indicate that both
ChatGPT and BARD demonstrate an inability to accurately
identify any of the CWE-IDs present in our testing samples.
Specifically, ChatGPT’s response suggests that additional con-
text is required to specify the CWE-ID for the 9 of the given
input code and generate 1 incorrect prediction of the remaining
one. On the other hand, BARD provides CWE-ID predictions
for each input function, but none of these predictions is correct.
As depicted in Fig. 3, the BARD model erroneously predicted
that the function is linked to a CWE-754 Improper Input Valida-
tion. However, the CWE-754 is Improper Check for Unusual or
Exceptional Conditions according to the official CWE website
[13] and the Improper Input Validation claimed by BARD is
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Fig. 3. An example of prompting Google BARD to identify CWE-ID
based on the input of a C++ function. BARD mistakenly describes CWE-
754 (Improper Check for Unusual or Exceptional Conditions) as CWE-20
(Improper Input Validation). Furthermore, the actual vulnerability associated
with the input function is CWE-787 as described in Fig. 1.

assigned as CWE-20. Moreover, the function is actually as-
sociated with a CWE-787 Out-of-Bound Write caused by the
incorrect variable type assignment (i.e., size_t) at the 9th line,
as illustrated in Fig. 1. The vulnerability could be repaired by
changing size_t to unsigned. These results emphasize the diffi-
culty of the task of identifying vulnerability types based solely
on the source code input. It is noteworthy that even though
LLMs like ChatGPT and BARD have been trained on extensive
datasets comprising hundreds of gigabytes, their performance
in this context remains unsatisfactory.

To address this challenge, we utilize language models specif-
ically designed for code, such as CodeBERT, GraphCodeBERT,
and CodeGPT. These models have undergone extensive pre-
training on millions of source code samples. To the best of
our knowledge, we are the first to formally conceptualize the
problem of CWE-ID classification using language models for
code and rigorously evaluate their performance. While these
language models have proven effective in various source code-
related tasks like defect detection and program repair, there is
no prior evidence demonstrating their suitability for our spe-
cific CWE-ID classification task. In order to surpass the direct
application of these models, we propose a novel approach that
leverages the hierarchical nature of CWE-IDs and incorporates
knowledge distillation techniques to address the existing chal-
lenge of long-tailed label distribution.

In what follows, we describe how we formulate the problem
based on the hierarchical nature of software vulnerability data
to mitigate the data imbalance issue.

C. Problem Statement

Assuming we have a source code data set consisting of
vulnerable source code functions and the corresponding
ground-truth labels representing the vulnerability types (i.e.,
CWE-ID) of the corresponding vulnerable function. We denote
the data set as D =

{
(F1, g1, y1), ..., (FN , gN , yN )

}
, where Fi

is a source code representation, gi is its CWE abstract type, and
yi is its CWE-ID. Each vulnerable function can be considered as
a sequence of code statements or a sequence of code tokens. In
this paper, we consider a vulnerable function Fi as a sequence
of code tokens and denote it as Fi = [t1, ..., tn] where each
function consists of n number of code tokens split by BPE
algorithm [62]. Each code token will be embedded into a vector
as detailed in Section III.

Moreover, our source code data has a hierarchical organiza-
tion in which vulnerability labels (i.e., CWE-IDs) and group
labels (i.e., CWE abstract types) are completed by software
security experts based on the user’s reports. CWE abstract types
are higher-level categorizations of CWE-IDs that simplify the
categorization of CWE-IDs and define the different abstraction
levels that apply to each CWE-ID. Thus, we can group CWE-
IDs with similar characteristics based on CWE abstract types.
There are some typical characteristics of this dataset. First, the
number of classes is large, e.g., we have 44 different CWE-
IDs in our experimental dataset. Second, the CWE-ID labels
are hierarchically grouped based on the CWE abstract types.
Moreover, the CWE-IDs in the same group (i.e., CWE abstract
type) are more similar and have the same nature of vulnera-
bilities. Third, it is a long-tailed dataset for which due to the
nature of vulnerabilities, some are more convenient to collect
(i.e., frequent CWE-IDs) while some are much harder to collect
(i.e., rare CWE-IDs). Fortunately, for the CWE-IDs in the same
group, because they share a common nature, their frequencies
are more balanced as shown in Fig. 2.

We aim to take advantage of the hierarchical nature of
vulnerabilities to propose a transformer-based hierarchical dis-
tillation framework, mitigate the long-tailed distribution issue
efficiently, and benefit from the ability to expose dark knowl-
edge from knowledge distillation as detailed in the following
section.

III. OUR PROPOSED FRAMEWORK

We now present our main contribution of a novel framework
that can effectively assist a transformer model to benefit from
our data grouping method and learn better vulnerability classifi-
cation. As we group the imbalanced label distribution into mul-
tiple label distributions based on the CWE abstract types, each
subdistribution consists of similar vulnerabilities and becomes
relatively more balanced than the original distribution. Thus, we
can learn a DL model easier on each distribution that achieves
promising performance. However, each model only performs
well for CWE-IDs in one CWE abstract type. Therefore, we
leverage a teacher-student learning framework where a model
from each abstract type is treated as a teacher model whose
ability will be generalized to a transformer-based student model
through a knowledge distillation process. The student model
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Fig. 4. The overview architecture of our VULEXPLAINER during knowledge distillation. The left part describes the inference process of TextCNN teachers.
The CWE-IDs are grouped hierarchically based on the CWE abstract types gi. A tied TextCNN backbone is connected with multiple classification heads,
where each head predicts CWE-IDs belonging to their own CWE abstract type. The right part illustrates the training process of the student model. A distillation
token [dis] and a [cls] token are added to the input Fi to learn from the knowledge of teachers and ground-truth labels respectively. The representation of
Fi forwards through a 12-layer GraphCodeBERT. Finally, the student relies on a KL loss to learn the representation of [dis] by distilling knowledge from
predictions of the teacher models, and a CE loss to learn the representation of [cls] token from ground-truth labels.

can learn from each teacher, hence performing well for CWE-
IDs under any abstract type. In general, our framework con-
sists of three sub-steps: (i) grouping source codes into groups
with the same CWE abstract types to produce many balance
distributions consisting of similar vulnerability types (CWE-
IDs), (ii) training multiple TextCNN teachers, each of which
aims to predict the CWE-IDs under one specific CWE abstract
type, and (iii) hierarchically distill a transformer-based student
from multiple diverse teachers trained in the previous step.
We term our approach as VULEXPLAINER, a transformer-based
hierarchical distillation to explain vulnerabilities by classifying
their CWE-IDs, which is overall summarized in Fig. 4.

A. Grouping Source Codes into the Groups With the Same
CWE Abstract Types

We first split a CWE-ID label distribution Y into multiple
sub-distributions based on CWE abstract type to group similar
CWE-IDs. Specifically, given a label distribution Y consisting
of 44 different CWE-IDs, we first split them into 5 groups based
on the CWE abstract types (i.e., YBase, YCategory , YClass,
YV ariant, and YDeprecated) where each of the sub-distribution
consists of multiple CWE-IDs belong to the same CWE abstract
type. For instance, Ybase is a distribution that consists of all
CWE-IDs in our dataset that belongs to the base type. In Fig. 2,
we provide statistics of the imbalance measure of each grouped
label distribution mentioned above and the ungrouped label
distribution Y .

B. Training Multiple TextCNN Teachers

We learn many TextCNN teacher models, each of which
predicts CWE-IDs in the same CWE abstract type. By grouping
by the CWE abstract types, we achieve the groups consisting
of many similar and more balancing CWE-IDs, hence allowing
us to train more accurate and better teachers.

Additionally, to encourage training multiple teachers simul-
taneously and save up the computation overhead, we share the
backbone of the TextCNN teachers. On top of this backbone,
we build up the classification heads for predicting the CWE-
IDs belonging to the same CWE abstract types. For instance,
for our dataset, we have 5 classification heads corresponding to
YBase, YCategory , YClass, YV ariant, and YDeprecated, each of
which aims to predict the CWE-IDs in the corresponding CWE
abstract type.

So far, we can train good teachers, but they only perform well
in the local distribution of an abstract type. In what follows,
we present how to employ hierarchical distillation to distill
knowledge from multiple teachers for achieving a transformer-
based approach that can generalize to predict well entire label
distributions.

C. Hierarchical Transformer-Based Distillation

At this outset, we impress upon you that our hierarchical
distillation framework can be applied to any transformer-based
SVC with slight modifications. To simplify the context, in the
sequel, we present the technicality for GraphCodeBERT [26].
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We leverage GraphCodeBERT which considers the Data
Flow Graph (DFG) of source codes. We use the Treesitter1

package to construct a DFG for each vulnerable function and
the GraphCodeBERT implementation [26] to integrate DFG in-
formation into a sequence of tokens along with a graph-guided
attention mask. We refer interested readers to GraphCodeBERT
paper [26] for detailed operations of the graph-guided attention
mask.

In particular, given a raw input function F , we tokenize
F into a set of subword tokens and embed each token into
ti ∈ R

d=768 to obtain a representation as t1:n = t1 ⊕ ...⊕ tn
(i.e., ⊕ is the concatenation operator) using the pre-trained BPE
tokenizer and the embedding layer of GraphCodeBERT [26].
We truncate and do padding to let n= 512 tokens.

Two special tokens, [cls] and [sep], are added during to-
kenization where the classification embedding (i.e., [cls]) is
used to learn the representation of input functions, which will
be used by a classification head to classify the CWE-ID. In
addition, a [dis] token is added before the [sep] token to distill
knowledge from the teachers. Such distillation embedding (i.e.,
[dis]) allows GraphCodeBERT to learn from the output of the
TextCNN teachers, as in a regular distillation, while remaining
complementary to the class embedding.

We denote H0 as the hidden vector output by Graph-
CodeBERT’s embedding layer. The embedding vectors H0 go
through 12 layers of BERT encoder with bidirectional self-
attention to learn the representation of source code: Hn =
En(Hn−1), n ∈ {1, ..., 12}. As proposed by Vaswani et al.
[69], each encoder En consists of a multi-head self-attention
operation followed by 2 layers of feed-forward neural networks.
En takes the Hn−1 as input to the self-attention operation
to generate self-attention hidden vectors An where LN is a
layer normalization and Attn is the multi-head self-attention
mechanism [69]:

An = LN(Attn(Hn−1)) +Hn−1 (1)

An then goes through 2 layers of feed-forward layers to result
in Hn, the final hidden vector generated by En:

Hn = LN(FFN(An) +An) (2)

At the last hidden layer, we possess the token embeddings
H12 consisting of the class token embedding Hcls and the
distillation token embedding Hdis. We then feed them to two
linear layers to work out the class token logitsZs

cls and the distill
token logits Zs

dis. Similar to Touvron et al. [68], we consider
both soft-label and hard-label distillations.

Soft-label distillation [29], [75] minimizes the Kullback-
Leibler divergence between the softmax of the teacher and the
student models. The output of softmax activation is mapped
into log space to prevent the underflow issue when computing
the KL loss. Let Zt be the logits of the teacher model for a
given source code F with the ground-truth label y. We de-
note λ ∈ [0, 1] the tunable coefficient balancing the Kullback–
Leibler divergence loss (LKL) and the cross-entropy (LCE) on

1https://github.com/tree-sitter/tree-sitter

ground truth labels y, and ψ the softmax function. The soft
distillation objective is as follows:

Lsoft = (1− λ)LCE

(
ψ(Zs

cls), y
)
+λLKL

(
ψ(Zs

dis), ψ(Z
t)
)

(3)

Hard-label distillation [68] leverages the one-hot hard de-
cision of the teacher yt for a given source code as a true label.
The hard-label distillation objective is as follows:

Lhard = (1− λ)LCE

(
ψ(Zs

cls), y
)
+λLCE

(
ψ(Zs

dis), yt
)

(4)

Inference with dual representation. Given a source code,
our VULEXPLAINER relies on representations of both [cls] and
[dis] tokens (i.e., Zcls and Zdis) to make the final prediction.
To this end, we introduce a tunable hyperparameter η ∈ [0, 1]
to tradeoff between the Hcls and Hdis as described in Equation
(5) where ψ is a softmax function.

p̂= ηψ(Zcls) + (1− η)ψ(Zdis)

ŷ = argmaxkp̂k (5)

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Research Questions

The key goal of this paper is to evaluate our VULEXPLAINER

thoroughly by comparing it with other baseline approaches that
focus on the source code classification task and data imbalance
issue. We also formulate an ablation study to support the design
decision of our VULEXPLAINER approach. Below, we present
the motivation for the following three research questions.

(RQ1) What is the accuracy of our VULEXPLAINER

for classifying software vulnerabilities (i.e., CWE-IDs)?
Recently, transformer models have been used to achieve
promising performance for SVC approaches [18], [71]. How-
ever, as pointed out in Section II-A, those approaches have faced
the data imbalance issue of the SVC task and no valid method
has been proposed to solve this issue for transformer models.
Thus, we formulate this RQ to investigate the accuracy of
our VULEXPLAINER which aims to mitigate the data imbalance
and further improve the performance of transformer models.
We compare our method with seven baselines as described in
Section IV-B.

(RQ2) Does our VULEXPLAINER approach outperform
loss-based methods for imbalanced data? Previous studies
of CWE-ID classification tasks have shown that the dataset
is unbalanced, with some CWE-IDs occurring significantly
more frequently than others [2], [18]. Such a problem can be
determined as a long-tailed learning problem which is well-
known in the image classification domain where the model has
trouble learning to recognize those rare images in the dataset. In
particular, the imbalance ratio can be computed as Nmax/Nmin

where N represents the number of samples in each class [30].
Our experiment dataset has an imbalance ratio of 213 where the
samples per class range from 2127 to 10, which can be consid-
ered an imbalanced dataset compared with previous long-tailed
learning studies [30], [34]. Thus, it is important to compare our
proposed approach with other methods that help the model learn
better about the imbalanced label distribution.
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(RQ3) What are the contributions of the components of
our VULEXPLAINER? In general, our VULEXPLAINER consists
of three key steps, (i) split data into multiple subsets based on
the CWE abstract types, (ii) train a TextCNN teacher model
with multiple classification heads, and (iii) distill via soft distil-
lation to build the final student model. However, little is known
about the contributions of each step in our VULEXPLAINER.
Thus, we formulate this RQ to conduct an ablation study on
the three key steps of our VULEXPLAINER.

B. Baseline Approaches

We compare our method with large pre-trained Transformer-
based models for source code, i.e., CodeBERT [20], Graph-
CodeBERT [26], and CodeGPT [46]. We also include Devign
[80] and ReGVD [53], GNN-based models that were designed
for software vulnerability detection tasks and achieved compet-
itive results. Furthermore, we include BAGS [41] and LFME
[76] that mitigate the imbalance of label distribution by splitting
the data into subsets based on label frequencies. The baseline
approaches are described as follows:

• CodeBERT: The pre-trained model for programming lan-
guages proposed by Feng et al. [20]. CodeBERT relies
on the same architecture as the BERT model consisting
of 12 identical Transformer encoders with bidirectional
self-attention. CodeBERT is pre-trained on bimodal data
including both programming language and natural lan-
guage to learn representations for source code and docu-
mentation. Specifically, it is pre-trained in 6 programming
languages (Python, Java, JavaScript, PHP, Ruby, Go) us-
ing masked language modelling [35] and replaced token
detection [11] objectives.

• GraphCodeBERT: The pre-trained code representation
with data flow using BERT architecture proposed by Guo
et al. [26]. This work is an extended version of CodeBERT
and proposed to embed graph structure (i.e., data flow
graph) with a sequence of source code tokens. To repre-
sent the relation between source code tokens and nodes
of the data flow, GraphCodeBERT relies on graph-guided
masked attention to define the interaction between code
tokens and nodes.

• CodeGPT: The GPT-2 architecture pre-trained on pro-
gramming languages corpus proposed by Lu et al. [46].
CodeGPT has the same model architecture and training
objective as GPT-2 [59]. CodeGPT is one of the baseline
approaches in the CodeXGLUE benchmark dataset for
code understanding and generation [46].

• Devign: The GNN-based approach for vulnerability de-
tection proposed by Zhou et al. [80]. This work builds a
multi-edged graph from a source code function, then lever-
ages Gated GNNs [42] to update node representations,
and finally utilizes a 1-D CNN-based pooling (“Conv”) to
make predictions. Note that the authors of Devign [80] do
not release the official implementation of Devign. Thus,
we reuse the available re-implementation provided by [53]
with the same training protocols as the original Devign.

• ReGVD: The GNN-based method with residual connec-
tions among GCN [38] layers for vulnerability detection is
proposed in [53]. ReGVD views each source code function
as a flat sequence of tokens to build a graph, wherein
node features are initialized by only the token embedding
layer of a pre-trained programming language (PL) model.
ReGVD then leverages GCN layers with pooling layers
to return a graph embedding for the source code function,
which is utilized to predict final targets.

• LFME: Xiang et al. [76] proposed to learn from multiple
expert (LFME) models to overcome an imbalanced image
dataset. LFME first split the imbalance label distribution
into groups where each group is more balanced than the
original distribution. It then learned one expert model on
each balanced distribution and distilled from all experts to
build a final student model. Note that the original LFME
framework was designed for the image domain, we fol-
lowed the original LFME proposal but used a TextCNN
to implement the LFME approach. We split the imbalance
label distribution into 3 balanced groups with a cardinality
threshold set to 100, 500 to fit our experimental dataset.
Given that our problem domain is source-code related, we
use the pre-trained embeddings of the CodeBERT model
to map a code sequence into vector space before input to
the TextCNN model.

• BAGS: A balanced training strategy based on group soft-
max for object detection, Li et al. [41] first split the im-
balance dataset into more balanced groups and proposed to
leverage a shared CNN model to extract the representation
of images and trained multiple classification heads where
each head was trained on a specific group of data. Simi-
lar to the implementation of LFME, we use TextCNN to
implement the BAGS framework to adapt to our domain.
We follow the same split as LFME to split an imbalance
label distribution into balanced groups and use the pre-
trained CodeBERT embeddings to build the BAGS ap-
proach adapted for the source code domain.

C. Experimental Dataset

We use the Big-Vul dataset [19] in our experiments, which
is widely used to evaluate DL models for vulnerability detec-
tion [21], [28], [40]. Big-Vul is created by crawling from 348
open-source Github projects: the public Common Vulnerabil-
ities and Exposures (CVE) database and CVE-related source
code repositories. Big-Vul consists of both vulnerable and non-
vulnerable C/C++ functions with 3,754 code vulnerabilities and
a total number of 188k functions. To satisfy the vulnerability
classification setting, we drop the non-vulnerable functions and
obtain 8,636 vulnerable functions with 44 different kinds of
CWE-IDs.

D. Parameter Setting

We split the data into 80% for training, 10% for valida-
tion, and 10% for testing. For hyperparameters of baseline ap-
proaches, we follow the best setting as specified by the original
authors. For our TextCNN teacher model, we use 3 hidden
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TABLE I
THE TRAINING SCHEMES OF TEACHER AND STUDENT MODELS IN OURVULEXPLAINER APPROACH

Models Optimizer Scheduler LR Grad Clip Batch Seq Len Epoch λ η
Teacher AdamW Linear 5e-3 1.0 128 512 50 - -
Student AdamW Linear 2e-5 1.0 16 512 50 0.7 0.9

TABLE II
(RQ1 RESULTS) THE MULTI-CLASS ACCURACY OF OUR PROPOSED METHOD AND EACH BASELINE APPROACH. WE PRESENT CWE-ID
CLASSIFICATION RESULTS FOR EACH GROUP OF CWE ABSTRACT TYPES AND THE OVERALL RESULT. MEASURE USING MULTI-CLASS

ACCURACY SHOWN IN PERCENTAGE. THE WEIGHTED F1 IS ALSO PRESENTED IN PERCENTAGE, WHICH CONSIDERS THE CLASS IMBALANCE.
A DESCRIPTION OF EACH CWE ABSTRACT TYPE CAN BE FOUND ON THE OFFICIAL CWE WEBSITE [14]

Method Group By CWE Abstract Types
Subsets Yclass Ybase Ycategory Yvariant Ydeprecated Overall Acc Weighted F1
Devign 58.11 44.05 45.10 31.71 38.46 51.16 48.71
ReGVD 60.42 55.95 56.21 36.59 57.69 57.52 56.45

CodeBERT 68.00 58.93 60.78 39.02 57.69 63.19 43.07
CodeGPT 65.26 60.12 64.05 51.22 53.85 63.08 62.30

GraphCodeBERT 63.16 63.69 64.05 41.46 61.54 62.27 62.74
BAGS 63.58 54.17 54.90 51.22 42.31 58.91 57.32
LFME 65.47 58.33 61.44 39.02 50.00 61.57 60.15

GraphCodeBERTSoft−VULEXPLAINER (ours) 66.53 64.29 62.75 56.10 57.69 64.58 63.91
CodeBERTSoft−VULEXPLAINER (ours) 68.00 64.29 67.97 48.78 61.54 66.09 62.93
CodeGPTSoft−VULEXPLAINER (ours) 68.63 62.50 60.78 56.10 57.69 65.05 63.77

layers, the window size of W = [3, 4, 5] respectively, 100 chan-
nels, and a dropout rate of 0.1. For our student model, we use
the default model architecture for the GraphCodeBERT model
which consists of 12 Transformer encoders with a dropout rate
set to 0.1 and a hidden dimension of 768. The training scheme
of our teacher and student models is reported in Table I. We
train each model through specific epochs as reported and select
the best model based on the highest accuracy on the validation
set. We run our experiments on a server with an AMD Ryzen
9 5950X with 16C/32T, 64 GB of RAM, and an NVIDIA
RTX3090 GPU with 24GB of RAM.

E. Experimental Results

1) (RQ1) What Is the Accuracy of Our VULEXPLAINER for
Classifying Software Vulnerabilities (i.e., CWE-IDs)?:
Approach. We conduct experiments on the Big-Vul dataset
described in Section IV-C and compare our methods with other
baselines described in Section IV-B. In addition, we apply our
method on top of the CodeGPT [46] and CodeBERT [20] mod-
els given that our method can be used for any transformer-based
models.

Result. Table II presents the experimental results of our
VULEXPLAINER methods (applied to GraphCodeBERT, Code-
BERT, and CodeGPT) and seven other baseline approaches
according to the multi-class accuracy evaluation metric. We
provide the classification accuracy of CWE-ID for each abstract
type, namely Yclass, Ybase, Ycategory, Yvariant, and Ydeprecated,
as well as the accuracy for the entire testing dataset (referred
to as “Overall”).

Our VULEXPLAINER method achieves an accuracy of
65%–66% when applying to different transformer-based
models, which is 5%–29% more accurate than other base-
line approaches. Our method outperforms all of the baselines
and improves the performance of transformer-based models.
In particular, our hierarchical soft distillation approach further

improves the performance of GraphCodeBERT (62% → 65%),
CodeBERT (63% → 66%), and CodeGPT (63% → 65%).

Furthermore, Fig. 2 presents the imbalance measure for un-
grouped label distribution (i.e., Y ) and each grouped label dis-
tribution (i.e., Yclass, Ybase, Ycategory, Yvariant, Ydeprecated).
Our grouping strategy can reduce both the imbalance ratio
(computed as Nmax/Nmin and N represents the number of
samples in each class [30]) and the entropy of the original label
distribution Y . Thus, the grouped label distributions become
more balance and contain less uncertainty, which is simpler for
a DL model to learn the classification of labels.

Furthermore, our approach demonstrates the highest
weighted F1 score of 64% as presented in Table II. The
weighted F1 score addresses class imbalance by assigning
greater weight to classes (i.e., CWE-IDs) with larger sample
sizes. This approach prevents the evaluation metric from being
biased towards the majority class, ensuring a fair evaluation of
the model’s performance across all CWE-IDs.

Our experimental results confirm that our grouping strategy
can mitigate the imbalance of data while grouping similar vul-
nerability types, hence accurate teachers can be learned on each
distribution. The experimental results confirm the effectiveness
of our distillation method to build a generalized transformer
student through soft distillation.

2) (RQ2) Does Our VULEXPLAINER Approach Outperform
Loss-Based Methods for Imbalanced Data?:
Approach. Recently, Menon et al. [47] proposed a softmax
with a logit translation method which is inspired by the classic
logit adjustment based on label frequencies [12], [58], [81].
On the other hand, focal loss [44] is a well-known extension
of the cross-entropy loss function, commonly applied to over-
come imbalance label distribution. It down-weights frequent
classes and focuses training on rare classes. We compare our
VULEXPLAINER with both logit adjustment (LA) and focal loss
(FL) approaches using the dataset described in Section IV-C.
We set the hyperparameter τ = 1 for LA and hyperparameter
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TABLE III
(RQ2 RESULTS) THE EXPERIMENTAL RESULTS WHEN COMPARING OUR PROPOSED APPROACH WITH OTHER LOSS-BASED METHODS

FOR THE DATA IMBALANCE PROBLEM. WE MEASURE THE ACCURACY OF CWE-ID CLASSIFICATION USING MULTI-CLASS

ACCURACY SHOWN IN PERCENTAGE. THE WEIGHTED F1 IS ALSO PRESENTED IN PERCENTAGE, WHICH CONSIDERS THE CLASS

IMBALANCE. (FL - FOCAL LOSS, LA - LOGIT ADJUSTMENT)

Methods Group By CWE Abstract Types
Subsets Yclass Ybase Ycategory Yvariant Ydeprecated Overall Weighted F1

GraphCodeBERT 63.16 63.69 64.05 41.46 61.54 62.27 62.74
GraphCodeBERTFL 64.21 62.50 58.17 53.66 57.69 62.04 61.61
GraphCodeBERTLA 63.58 64.29 60.78 43.90 65.38 62.27 62.74

GraphCodeBERTVULEXPLAINER (ours) 66.53 64.29 62.75 56.10 57.69 64.58 63.91

CodeBERT 68.00 58.93 60.78 39.02 57.69 63.19 43.07
CodeBERTFL 64.63 58.93 66.67 41.46 57.69 62.62 44.25
CodeBERTLA 68.84 66.67 60.13 53.66 65.38 66.09 51.64

CodeBERTVULEXPLAINER (ours) 68.00 64.29 67.97 48.78 61.54 66.09 62.93

CodeGPT 65.26 60.12 64.05 51.22 53.85 63.08 62.30
CodeGPTFL 63.16 60.71 64.71 51.22 46.15 61.81 61.06
CodeGPTLA 62.32 59.52 59.48 58.54 57.69 61.00 61.47

CodeGPTVULEXPLAINER (ours) 68.63 62.50 60.78 56.10 57.69 65.05 63.77

α= 0.25, γ = 2 for FL as those values yielded the best results
reported by the original authors [44], [47].

Result. Table III presents the experimental results of our
VULEXPLAINER approach and two other loss-based approaches
according to the multiclass accuracy evaluation metric. Similar
to RQ1, We provide the classification accuracy of CWE-ID for
each abstract type and the accuracy for the entire testing dataset.

Our approach achieves the best performance for all
of the transformer-based models (i.e., GraphCodeBERT,
CodeBERT, and CodeGPT). In terms of GraphCodeBERT
and CodeGPT, both FL and LA approaches do not further
improve the original accuracy of GraphCodeBERT’s 62% and
CodeGPT’s 63%. In contrast, our VULEXPLAINER improves the
performance of GraphCodeBERT (62% −→ 65%) and CodeGPT
(63% −→ 65%). In terms of CodeBERT, both our approach and
LA improve the performance of CodeBERT from 63% to 66%
while FL does not improve the performance.

The focal loss reduces the loss contribution of frequent sam-
ples and the logit adjustment encourages a large relative margin
between logits of rare versus dominant labels. Such approaches
may benefit the rare labels, but the performance of the frequent
labels may not benefit as much as the rare ones. On the other
hand, our method builds TextCNN teachers to focus on different
subsets of data and transfer knowledge to the student model
via distillation without adjusting loss weights for rare samples
that may not further improve the performance of those frequent
classes.

Last but not least, as presented in Table III, our ap-
proach demonstrates the highest weighted F1 score which fur-
ther improves the performance of GraphCodeBERT (63% −→
64%), CodeBERT (43% −→ 63%), and CodeGPT (62% −→
64%). As discussed in RQ1, the weighted F1 score effec-
tively handles class imbalance by assigning higher weights to
CWE-IDs with larger sample sizes. This strategy ensures an
unbiased evaluation metric that evaluates the model’s perfor-
mance across all CWE-IDs fairly. In summary, these results
confirm that our approach can achieve promising performance
for both rare and common CWE-IDs, which is better than ad-
vanced long-tailed learning methods such as focal loss and logit
adjustment.

3) (RQ3) What Are the Contributions of the Components of
Our VULEXPLAINER?:
Approach. Our VULEXPLAINER consists of three steps as men-
tioned in Section IV-A. We conduct an ablation study for each
step by comparing our VULEXPLAINER with other variants.
First, we study the effect of our grouping strategy on the hi-
erarchical nature of CWE-IDs. We compare our data splitting
method of grouping by vulnerability types (i.e., CWE abstract
types) with grouping by label frequency used by previous ap-
proaches that focus on label frequencies to balance the label
distribution [41], [76]. Second, we study our choice of teacher
models. It is feasible to use transformer-based models as teach-
ers, hence we compare a variant that uses transformer-based
teachers to study the effect of having an identical architecture
for teachers and the student. Third, we study our choice of dis-
tillation methods. We compare the soft distillation (3) with the
hard distillation (4) during the training of the student model. We
conduct our ablation study for all of the transformer-based mod-
els, i.e., GraphCodeBERT, CodeBERT, and CodeGPT. Note
that each method including our proposed VULEXPLAINER and
variants follows the same distillation framework to ensure fair
comparisons.

Result. Table IV presents the experimental results of the
ablation study on each step of our VULEXPLAINER approach.

In terms of grouping methods, our hierarchical group-
ing strategy based on vulnerability types (our method)
achieves the best performance for all models of interest.
The LFME grouping strategy focuses only on label frequencies
and some irrelevant CWE-IDs may appear in the same group. In
contrast, our hierarchical grouping mitigates the data imbalance
while grouping similar CWE-IDs. The result confirms that our
grouping strategy is more effective than the strategy focusing
on label frequencies for the software vulnerability classification
task.

In terms of teacher models, the results show that
distilling knowledge from TextCNN teachers (our method)
outperforms distilling from transformer-based teachers for
all models of interest. It has been shown in the previous
work from the image domain that using different architectures
for teacher and student models yields better distillation [68].
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TABLE IV
(RQ3 RESULTS) THE EXPERIMENTAL RESULTS OF THE ABLATION STUDY TO

INVESTIGATE THE THREE KEY STEPS IN OUR VULEXPLAINER METHOD. WE

CONDUCT THE ABLATION STUDY FOR ALL THREE TRANSFORMER MODELS,
I.E., GCB - GRAPHCODEBERT, CB - CODEBERT, AND GPT - CODEGPT.

RELATIVE IMPROVEMENT IS PRESENTED FOR COMPARISON

Compare Grouping Methods Models Accuracy Improvement
CWE Grouping (ours) GCB 64.58 +4%

Label Freq Grouping GCB 62.27 -
CWE Grouping (ours) CB 66.09 +5%

Label Freq Grouping CB 62.73 -
CWE Grouping (ours) GPT 65.05 +4%

Label Freq Grouping GPT 62.27 -
Compare Teacher Models Models Accuracy Improvement
TextCNN Teacher (ours) GCB 64.58 +0.4%

Transformer Teacher GCB 64.35 -
TextCNN Teacher (ours) CB 66.09 +6%

Transformer Teacher CB 62.27 -
TextCNN Teacher (ours) GPT 65.16 +0.2%

Transformer Teacher GPT 65.05 -
Compare Distil Methods Models Accuracy Improvement
Soft Distillation (ours) GCB 64.58 +4%

Hard Distillation GCB 62.27 -
Soft Distillation (ours) CB 66.09 +5%

Hard Distillation CB 62.85 -
Soft Distillation (ours) GPT 65.05 +0.7%

Hard Distillation GPT 64.58 -

Our experimental results reveal similar results that using
different architectures for teacher and student models achieves
better accuracy. More importantly, training TextCNN teachers
is efficient in terms of time and parameters required where
transformer-based models require around 125M parameters
while TextCNN teachers only require 40M parameters.

By offering improved computational efficiency and reduced
storage demands with fewer model parameters, our approach
could enable software vulnerability prediction systems to be
implemented on a broader range of platforms, including devices
with limited resources. This practicality and accessibility ensure
that the benefits of our approach can be extended to various
security analysis applications (e.g., Fu et al. [22] proposed,
AIBugHunter, a security analysis tool in Visual Studio Code
that can predict, classify, and repair software vulnerabilities
powered by deep learning models.), making it a valuable so-
lution for real-world vulnerability assessment tasks.

In terms of distillation methods, the results show that
soft distillation (our method) yields better results than
hard distillation for all models of interest. Previous work
from the image domain [68] has shown that hard distillation
achieves more advanced results than soft distillation for the
image classification task. However, in the context of the SVC
task, our findings indicate that soft distillation is superior to hard
distillation. This discrepancy highlights the importance of con-
sidering the unique characteristics and requirements of different
tasks when selecting an appropriate distillation method.

Soft distillation outperformed hard distillation in our SVC
task due to several reasons. Soft distillation preserves the soft
probabilities or logits produced by the teacher models, which
contain more nuanced information about the relative confi-
dences of different class labels. This allows the student model to
learn from the rich and continuous knowledge provided by the
teacher models. In addition, soft distillation provides a more

forgiving learning signal compared to hard distillation. Hard
distillation relies solely on the discrete and often less reliable
hard labels produced by the teacher models. In contrast, soft
distillation allows the student model to learn from the teacher’s
uncertainty and provides a smoother learning signal, making it
more resilient to noisy or incorrect labels.

V. DISCUSSION

In our previous experiment section, we empirically evalu-
ated the performance of our VULEXPLAINER and conducted
an ablation study to support our design rationale. However,
the question of how our VULEXPLAINER method improves the
performance of a transformer model remains unresolved. In
this section, we perform an extended analysis of our method to
resolve the question. We use the case of CodeBERT to perform
our analysis because our VULEXPLAINER approach improves
the CodeBERT the most (i.e., 63% −→66%) when comparing
with GraphCodeBERT and CodeGPT.

A. What Is the Effect of Using a Language Model Pre-Trained
on Code for Our CWE-ID Classification Task?

Our preliminary analysis, presented in Section II.B.1,
demonstrates the difficulty of performing CWE-ID classifica-
tion solely based on the source code input. Even advanced
language models such as ChatGPT and BARD were unable to
accurately identify CWE-IDs for vulnerable code functions. In
order to tackle this challenge, we leverage language models that
have been pre-trained on code (e.g., CodeBERT) and examine
their performance in addressing our research questions. How-
ever, the extent to which pre-training improves performance
remains unknown. To investigate this, we trained a model with
the same architecture as CodeBERT but with randomly initial-
ized weights (i.e., no pre-training), excluding any pre-training
on the extensive CodeSearchNet dataset [31] comprising over
2 million code samples.

As depicted in Table V, the accuracy of CodeBERT w/o pre-
training is measured at 55%. This finding confirms the effec-
tiveness of pre-training on the extensive code corpus conducted
by Feng et al. [20], as it introduces an 8% improvement, raising
the accuracy to 63%. Additionally, our distillation methods con-
tribute an additional 3% improvement, resulting in a state-of-
the-art performance of 66%. It is important to acknowledge that
the pre-training step is resource-intensive and demands a large
volume of data, with the model being trained on millions of
samples using substantial computing resources. In contrast, our
approach only requires approximately 7,000 training samples.

B. What Is the Performance of Our TextCNN Teacher Model?

As shown in the first row of Table V, our CNNTeacher
achieves the best overall performance of 77% on the whole test-
ing set, which are 11% and 14% better than the student model
(CodeBERTVULEXPLAINER) and CodeBERT respectively. Fur-
thermore, each teacher also achieves the best performance on
their assigned CWE abstract type. These results confirm the
effectiveness of our approach to group the data based on CWE
abstract types and train good teacher models.
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TABLE V
(DISCUSSION) THE COMPARISON BETWEEN TEXTCNN TEACHER, CODEBERTVULEXPLAINER, AND

CODEBERT. WE MEASURE THE ACCURACY OF CWE-ID CLASSIFICATION USING MULTI-CLASS ACCURACY

SHOWN IN PERCENTAGE

Methods Group By CWE Abstract Types
Subsets Yclass Ybase Ycategory Yvariant Ydeprecated Overall

TextCNN Teacher 72.21 77.38 83.66 95.12 88.46 76.85
CodeBERTVULEXPLAINER (ours) 68 64.29 67.97 48.78 61.54 66.09

CodeBERT 68 58.93 60.78 39.02 57.69 63.19
CodeBERT w/o pre-training 60.63 47.02 55.56 34.15 34.62 54.98

TABLE VI
(DISCUSSION) PERFORMANCE ANALYSIS OF CodeBERTVULEXPLAINER
AND CODEBERT ON THREE DIFFERENT TESTING SUBSETS. MEASURE

USING MULTI-CLASS ACCURACY SHOWN IN PERCENTAGE. CNNT -

CNNTEACHER, CB - CODEBERT, VULEXP - VULEXPLAINER

Testing Subset Methods Accuracy
CNNT correctly predicted CBV ulExp (ours) 79.52 (528/664)

CB 71.23 (473/664)
CB correctly predicted CBV ulExp (ours) 91.85 (462/503)
CB wrongly predicted CBV ulExp (ours) 30.19 (109/361)

However, as mentioned in Section III, those teacher models
only classify well for CWE-IDs under their own CWE abstract
type. Thus, we leverage a hierarchical knowledge distillation
process to transfer the prediction ability of teachers to a student
model (e.g., CodeBERT) that generalizes to all CWE-IDs. In
the following section, we analyze the effects of our hierarchical
knowledge distillation method on the CodeBERT model.

C. What Are the Effects of Our Hierarchical Knowledge
Distillation Method on a Transformer Student Model?

We perform our analysis using three testing subsets. The first
subset consists of testing samples that were correctly predicted
by the TextCNN teachers. Our goal is to analyze whether our
VULEXPLAINER, which is distilled from the TextCNN teach-
ers, can achieve higher accuracy compared to the CodeBERT
model, which solely relies on the ground-truth labels for learn-
ing. This analysis will provide insights into what extent our
knowledge distillation method can improve the extraction from
the teacher models. The second subset consists of testing sam-
ples that were correctly predicted by the CodeBERT model. Our
objective is to investigate the extent to which correct knowledge
can be preserved when constructing our VULEXPLAINER using
the CodeBERT architecture as a foundation. The third subset
comprises testing samples that were incorrectly predicted by
the CodeBERT model. Our goal is to examine the extent to
which correct knowledge was acquired through our hierarchical
distillation process, which corrects the erroneous predictions
made by our base model, CodeBERT.

Results are presented in Table VI. In the first subset, cor-
rectly predicted by the teacher models, our student model (i.e.,
CodeBERTVULEXPLAINER) outperforms CodeBERT by 8%
which has 55 more correct predictions. This observation indi-
cates that the CodeBERT model acquires accurate knowledge
throughout our distillation process, thereby aligning with the
underlying assumption of knowledge distillation, that the stu-
dent model will learn to emulate the predictions made by the
teacher models.

Within the second subset, where the predictions made by the
CodeBERT model were correct, our student model achieves an
accuracy of 92%. Out of the total 503 samples in this subset, a
notable 462 samples were accurately predicted by our method.
This outcome highlights the remarkable retention of correct
predictions, as our hierarchical distillation process successfully
preserves 92% of the correct predictions made by our base
model, CodeBERT. This demonstrates the effectiveness of our
approach in maintaining the integrity and reliability of the initial
model’s performance.

In the third subset, where the predictions made by the Code-
BERT model were wrong, our student model achieves an accu-
racy of 30%. Out of the total 361 wrongly predicted samples in
this subset, our approach successfully rectifies 109 of these er-
roneous predictions. This result emphasizes the effectiveness of
our distillation approach in addressing the incorrect predictions
made by the original CodeBERT model. It illustrates how our
approach benefits from more accurate teacher models to further
enhance the overall performance of our approach.

VI. RELATED WORK

Vulnerability classification is a task to classify vulnera-
bility labels given source code input. Traditionally, machine
learning (ML)-based methods have been proposed to automat-
ically classify vulnerability types based on textual vulnerabil-
ity descriptions (e.g., the description shown at the bottom of
Fig. 1) [3], [22], [50], [63]. However, these methods often
employ traditional data preprocessing approaches like a bag of
words (BoW) and TF-IDF, which may not adequately capture
the representativeness of text data compared to word embedding
techniques used in deep learning. Consequently, the perfor-
mance of the resulting classification models can be hindered.
It is important to acknowledge that during the early stages of
software development, such textual descriptions may not be
readily available. Security analysts heavily rely on the source
code itself to classify and identify vulnerabilities during this
critical phase. In this paper, our primary objective is to propose
an end-to-end method that can serve as a vulnerability classi-
fication approach, empowering security analysts to accurately
identify vulnerability types. Therefore, we exclusively utilize
the source code as the primary feature for making predictions,
recognizing its significance in practical scenarios.

Recently, multiple deep learning (DL)-based approaches
have been proposed to learn more comprehensive word em-
beddings for textual data and achieve promising performance.
For instance, RNN-based models are proposed to learn the
representation of source code sequentially [17], [43], [52], [61].
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GNN-based models are proposed to learn from the graph prop-
erties (e.g., AST, CFG, and DFG) constructed using static code
analysis [9], [80]. Recently, a graph construction based only
on code tokens in source code is proposed without using an
analyzer, which can also be learned from GNN models [53].
Transformer-based pre-trained language models are commonly
adopted to learn the representation through self-attention for
both binary [21], [67] and multi-class [18], [71] vulnerability
classification. While most proposed techniques focus on binary
vulnerability classification, we explore multi-class vulnerability
classification that aims to classify the vulnerability type (i.e.,
CWE-ID) of vulnerable functions.

On the other hand, previous research has explored the utiliza-
tion of multi-task learning techniques to enhance the perfor-
mance of vulnerability classification. The underlying premise
is that incorporating related tasks, such as predicting the CVSS
severity score, can potentially improve the overall performance
of the vulnerability classification model. While some studies
leverage manual loss weight tuning [5], [23], [39] to determine
the optimal loss weight for each task, Fu et al. [22] lever-
ages multi-objective optimization to optimally determine the
weights between different tasks. While these studies primarily
emphasize enhancing the model through multi-task learning,
our approach diverges by focusing on single-task learning and
addressing the challenge of data imbalance in the CWE-ID
classification task.

Long-tailed learning is used to learn a model on a highly
imbalanced label distribution. Recently, Menon et al. [47] pro-
posed a logit adjustment-based approach to adjust the model’s
output logit based on the label frequencies. Focal Loss [44]
adjusts the standard cross-entropy loss to reduce the relative
loss for well-classified samples and focus more on rare samples
that are misclassified during model training. In addition, class-
balanced loss [16] and label-distribution-aware margin loss [8]
also tackle long-tailed distribution via loss adjustment. Further-
more, Zhang et al. [78] explored prevalent re-sampling methods
[7], [34], [48] and data augmentation techniques [70], [77]
for effectively addressing long-tailed data challenges within
the domain of visual recognition. It is worth noting that our
VULEXPLAINER approach can seamlessly integrate with these
loss adjustments and re-sampling techniques tailored for long-
tailed data distributions.

On the other hand, ensemble-based methods have been pro-
posed to mitigate the long-tailed label distribution. For instance,
Zhou et al. [79] proposed to train two neural branches, one
learning from original label distribution while the other learn-
ing from frequency-reversed label distribution. Li et al. [41]
proposed a BAGS approach to split long-tailed distribution
into multiple more balanced sub-distributions. BAGS then learn
multiple classification heads under a shared feature extractor,
where each head is only trained on a specific sub-distribution.
Xiang et al. [76] proposed an LFME approach that also splits
data into multiple sub-groups to get a smaller class longtailness
on each subset. LFME then learns an expert model on each
subset and distills knowledge from all experts to build a unified
student model.

While previous approaches proposed to divide a label dis-
tribution based on label frequencies [41], [76], these data
division methods are not optimal for the vulnerability classifi-
cation task since similar vulnerabilities can appear in different
groups. In contrast, we propose a data division strategy based on
CWE abstract types that result in more balanced distributions
while keeping CWE-IDs with similar characteristics in the same
group. Furthermore, we explore knowledge distillation via the
self-attention of transformer models using a distillation token.

VII. THREATS TO VALIDITY

Threats to the internal validity relate to hyperparameter
settings when fine-tuning transformer models including Graph-
CodeBERT, CodeBERT, and CodeGPT. We use the default
hyperparameter settings suggested by the original authors of
each model and only tune the learning rate as transformer-based
models are extremely expensive and consist of millions of pa-
rameters. To mitigate this threat, we report the hyperparameter
settings in the paper and provide a public replication package
[4] to ensure the reproducibility of our experiments.

Threats to the external validity relate to the general-
izability of our VULEXPLAINER approach. We conduct our
experiment using a large-scale vulnerability dataset (i.e., the
Big-Vul dataset [19]) consisting of thousands of vulnerable
functions parsed from real-world software projects. Thus, our
VULEXPLAINER method is not necessarily to generalize to other
datasets. To mitigate this threat, we open-source our experimen-
tal dataset and data processing script in our public replication
package [4]. However, other vulnerability datasets can be ex-
plored in future work.

In theory, our VULEXPLAINER method can be applied to any
transformer-based model. Nevertheless, we experiment with
GraphCodeBERT, CodeBERT, and CodeGPT, which are the
most common pre-trained transformer models for code-related
classification tasks. Thus, our VULEXPLAINER method is not
necessarily to generalize to other transformer models. To mit-
igate this threat, we open-source all of the pre-trained models
included in our experiments. However, other transformer mod-
els can be explored in future work.

VIII. CONCLUSION

In this paper, we have introduced a new data grouping ap-
proach based on CWE abstract types and a teacher-student
learning framework to overcome the data imbalance issue of
the software vulnerability classification task. By hierarchically
grouping an imbalanced label distribution into multiple sub-
distributions based on CWE abstract types, the sub-distributions
become more balanced, and similar CWE-IDs are distributed
in the same group. Thus, we can learn more accurate TextCNN
teachers. However, they only perform well in each group re-
spectively. We learn a transformer student model through our
hierarchical knowledge distillation framework to generalize
the knowledge of teachers to predict all CWE-IDs accurately.
Through an extensive evaluation of 8,636 real-world vulnera-
bilities, our approach outperforms all of the baselines including
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source code transformer models and long-tailed learning ap-
proaches proposed in the vision domain. Last but not least, our
approach can be applied to various Transformer-based SVCs
without modifying the architecture but adding a special distil-
lation token to the input.

DATA AVAILABILITY

To support the open science community, we publish a replica-
tion package including the studied dataset, scripts, and exper-
imental results in GitHub (https://github.com/awsm-research/
VulExplainer).
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