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Recently, automated vulnerability repair (AVR) approaches have been widely adopted to combat increasing software security

issues. In particular, transformer-based encoder-decoder models achieve competitive results. While vulnerable programs

may only consist of a few vulnerable code areas that need repair, existing AVR approaches lack a mechanism guiding their

model to pay more attention to vulnerable code areas during repair generation. In this paper, we propose a novel vulnerability

repair framework inspired by the Vision Transformer (VIT)-based approaches for object detection in the computer vision

domain. Similar to the object queries used to locate objects in object detection in computer vision, we introduce and leverage

vulnerability queries (VQs) to locate vulnerable code areas and then suggest their repairs. In particular, we leverage the

cross-attention mechanism to achieve the cross-match between VQs and their corresponding vulnerable code areas. To

strengthen our cross-match and generate more accurate vulnerability repairs, we propose to learn a novel vulnerability mask

and integrate it into decoders’ cross-attention, which makes our VQs pay more attention to vulnerable code areas during

repair generation. In addition, we incorporate our vulnerability mask into encoders’ self-attention to learn embeddings that

emphasize the vulnerable areas of a program. Through an extensive evaluation using the real-world 5,417 vulnerabilities,

our approach outperforms all of the AVR baseline methods by 2.68%-32.33%. Addtionally, our analysis of the cross-attention

map of our approach conirms the design rationale of our vulnerability mask and its efectiveness. Finally, our survey study

with 71 software practitioners highlights the signiicance and usefulness of AI-generated vulnerability repairs in the realm of

software security. The training code and pre-trained models are available at https://github.com/awsm-research/VQM.

CCS Concepts: · Software and its engineering; · Security and privacy→ Software and application security;

Additional Key Words and Phrases: Software Security, Automated Vulnerability Repair

1 INTRODUCTION

Software vulnerabilities are security laws, glitches, or weaknesses found in software code that could lead to
a severe system crash or be leveraged as a threat source by attackers [CSRC 2020]. According to the National
Vulnerability Database (NVD), the number of vulnerabilities discovered yearly has increased from 6,447 in 2016
to 20,156 in 2021 and 18,017 vulnerabilities have been found in 2022. This trend indicates more vulnerabilities are
being discovered and released every year, meaning that there will be more workloads for security analysts to track
down and patch those vulnerabilities. In particular, it may take 58 days on average to ix a vulnerability based
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on vulnerability statistics reported in 2022 [Edgescan 2022]. Recently, Deep Learning (DL)-based approaches
have been proposed to automate the vulnerability repair process by learning the representation of vulnerable
programs and generating repair patches accordingly, which may potentially accelerate manual security analysis
processes. Speciically, the transformer architecture has been widely adopted to generate accurate vulnerability
patches that repair the vulnerable code automatically [Berabi et al. 2021; Chen et al. 2022; Chi et al. 2022; Fu
et al. 2022]. The attention-based transformer is shown to be more efective than RNNs because its self-attention
mechanism learns global dependencies when scanning through each word embedding rather than processing
input sequentially.
In the automated vulnerability repair (AVR) problem, a deep learning model consists of encoders to encode

the code representations of the vulnerable function and the decoders generate repair code for vulnerable code
areas in the function. Commonly, vulnerabilities in a function are caused by a few vulnerable code areas, hence
previous studies have proposed various techniques to localize vulnerable code areas in a vulnerable function [Ding
et al. 2022; Fu and Tantithamthavorn 2022b; Li et al. 2021; Nguyen et al. 2021]. For instance in Figure 1 and 2,
the decoders only need to generate the repair code for speciic vulnerable code areas. Thus, awareness and
attention to the vulnerable code areas including vulnerable statements are crucially important. This further helps
to guide an AVR model to emphasize and focus more on the vulnerable statements for producing better repairs.
However, existing AVR approaches lack a mechanism to enhance awareness of vulnerable code areas during the
vulnerability repair process. It is also challenging because vulnerable code areas can appear in diferent spatial
locations. Toward this challenge, we observe that object detection in computer vision intuitively shares a similar
concept to vulnerability repair because both approaches need to localize speciic items in the input. Particularly,
by linking the vulnerable code areas in a source code to the objects in an image, we hope to borrow the principles
from the VIT-based objection detection approaches [Carion et al. 2020; Wang et al. 2021b; Zhu et al. 2020] to
propose a novel solution for the AVR problem.

In this paper, we propose an AVR approach that can guide the encoders and decoders to focusmore on vulnerable
code areas during the repair process. In particular, our approach is inspired by the VIT-based approaches for
object detection [Carion et al. 2020; Wang et al. 2021b; Zhu et al. 2020]. Figure 3 presents our analogy between
object detection from the computer vision domain and vulnerability repair from the NLP domain. We connect
detecting spatial objects in an image for predicting bounding boxes to localizing spatial vulnerable code areas
in a vulnerable function for generating the corresponding repair code. Our model consists of a vulnerability
repair encoder to produce code token embeddings for vulnerable functions and a vulnerability repair decoder to
generate repair patches. As presented in Figure 3, the object queries are used in the VIT-based approaches for
object detection aiming to attend to objects in an image for predicting the corresponding bounding boxes, on the
other hand, we devise vulnerability queries (VQs) aiming to attend to the vulnerable code blocks in a source code
for predicting repair tokens. Additionally, the cross-attention mechanism employed in the vulnerability repair
decoder assists the VQs in cross-matching and paying more attention to the vulnerable code blocks.

To further strengthen the attention of the VQs to the vulnerable code areas and facilitate the repair generation
for vulnerable code areas, we train an additional model to learn a vulnerability mask (VMs). The VMs is a
probability distribution used to emphasize vulnerable code areas in vulnerable functions. We then incorporate the
VMs with the cross-attention in our repair decoder that guides our VQs to attend more to vulnerable code areas
and generate corresponding repairs. In addition, we apply the VMs to the self-attention of our repair encoder to
pay attention to vulnerable code areas when encoding the representations of vulnerable functions. We name our
approach VQM - Vulnerability Repair Through Vulnerability Query and Mask.

We conduct an experiment and compare our VQM approach with six competitive AVR baseline approaches
(i.e., VRepair [Chen et al. 2022], VulRepair [Fu et al. 2022], TFix [Berabi et al. 2021], CodeBERT [Feng et al. 2020],
GraphCodeBERT [Guo et al. 2021], and SequenceR [Chen et al. 2019]). Through an extensive evaluation of our
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Vulnerable Function — CWE-787 (Out-of-bounds Write)
41 41 GPMF_ERR IsValidSize(GPMF_stream *ms, uint32_t size)

42 42 {

43 43     if (ms)

44 44     {

45 45             int32_t nestsize = (int32_t)ms->nest_size[ms->nest_level];

46 46             if (nestsize == 0 && ms->nest_level == 0)

47 47                     nestsize = ms->buffer_size_longs;

50 50     }

51 51     return GPMF_ERROR_BAD_STRUCTURE;

52 52 }

Subword-tokens of the vulnerable function

['GP', 'MF', '_', 'ERR', 'IsValid', 'Size', '(', 'GP', 'MF', '_', 'stream', '*', 'ms', ',', 
'uint', '32', '_', 't', 'size', ')', '{', 'if', '(', 'ms', ')', '{', 'int', '32', '_', 't', 'nest', 'size', 
'=', '(', 'int', '32', '_', 't', ')', 'ms', '->', 'nest', '_', 'size', '[', 'ms', '->', 'nest', '_', 
'level', '];', 'if', '(', 'nest', 'size', '==', '0', '&&', 'ms', '->', 'nest', '_', 'level', '==', '0', 
')', 'nest', 'size', '=', 'ms', '->', 'buffer', '_', 'size', '_', 'l', 'ongs', ';', 'if', '(', 'size', 
'+', '2', '<=', 'nest', 'size', ')', 'return', 'GP', 'MF', '_', 'OK', ';', '}', 'return', 'GP', 
'MF', '_', 'ERROR', '_', 'BAD', '_', 'STRUCT', 'URE', ';', '}']

Subword-tokens of the vulnerability repair

['<S2SV_ModStart>', 'ms', ')', '{', 'uint', '32', '_', 't', 'nestsize', '=', '(', 'uint', '32', 
'_', 't', '<S2SV_ModEnd>', ')', 'ms', '->']

Note.
'ms', ')', '{' are context tokens before the fix
')', 'ms', '->' are context tokens after the fix

Those context tokens highlighted in blue are used to match the repair patches 
to the vulnerable parts in a vulnerable function.

Repaired Function
41 41 GPMF_ERR IsValidSize(GPMF_stream *ms, uint32_t size)

42 42 {

43 43     if (ms)

44 44     {

- 45             int32_t nestsize = (int32_t)ms->nest_size[ms->nest_level];

+ 45             uint32_t nestsize = (uint32_t)ms->nest_size[ms->nest_level];

46 46             if (nestsize == 0 && ms->nest_level == 0)

47 47                     nestsize = ms->buffer_size_longs;

50 50     }

51 51     return GPMF_ERROR_BAD_STRUCTURE;

52 52 }

Fig. 1. (CWE-787 Out-of-bounds Write) A real-world example [GoPro 2019] of vulnerability in a C function is caused by an

inappropriate variable type definition, which could lead to serious security breaches or system crashes. The red tokens are

vulnerable tokens; the green tokens are tokens used to repair; and the blue tokens are context tokens used to locate where

the repair tokens should be implemented. It is worth noting that the model may not always match repairs to their correct

locations when repeated context tokens are present. Nonetheless, in our experiments, we adopt the approach of Chen et

al. Chen et al. [2022] by utilizing three context tokens, which efectively align all repairs in our studied dataset. The let

column presents the vulnerable function where below are sub-word tokens �� used as input for our repair model. It can be

seen that only some of the tokens highlighted in red (i.e., tokens corresponding to Line 45) are vulnerable. The right column

presents the corresponding repaired function where below are sub-word tokens �� as the repair patch output by our repair

model.

approach on 5,417 C/C++ vulnerable functions involving 2,095 diferent vulnerabilities spanning from 1999 to
2021, we empirically evaluate our approach by answering the following two research questions:

(RQ1) What is the accuracy of our VQM approach for generating software vulnerability repairs?

Results. Among all approaches included in our experiment, our VQM approach achieves the best per-
centage of perfect predictions of 32%, 43%, and 45% respectively when using beam=1,3,5 during repair
generation.

(RQ2) What are the contributions of each component of our VQM approach?

Results. Our method of applying vulnerability queries with vulnerability masks performs the best when
compared with other variants in the ablation study. In addition, we ind that using perfect vulnerability
masks can achieve optimal performance, highlighting the efectiveness of our proposed vulnerability masks.

While our RQ1 and RQ2 delve into performance evaluations of our approach, the practical utility of AI-generated
repairs for software developers remains a question unexplored. Consequently, in pursuit of this understanding,
we address RQ3 by conducting a user study speciically aimed at gauging the perceptions of software developers
possessing a security background towards AI-generated vulnerability repairs.

ACM Trans. Softw. Eng. Methodol.
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Vulnerable Function — CWE-125 (Out-of-bounds Read)
809 809 static inline unsigned short ReadPropertyUnsignedShort(const 

EndianType endian,
810 810 const unsigned char *buffer)

811 811 {

812 812     unsigned short

813 813         value;

814 814     if (endian == LSBEndian)

815 815         {

816 816             value=(unsigned short) ((buffer[1] << 8) | buffer[0]);

817 817             return((unsigned short) (value & 0xffff));

818 818         }

819 819     value=(unsigned short) ((((unsigned char *) buffer)[0] << 8) |

820 820         ((unsigned char *) buffer)[1]);

821 821     return((unsigned short) (value & 0xffff));

822 822 }

Subword-tokens of the vulnerable function

['static', 'inline', 'unsigned', 'short', 'Read', 'Property', 'Unsigned', 'Short', '(', 
'const', 'End', 'ian', 'Type', 'endian', ',', 'const', 'unsigned', 'char', '*', 'buffer', 
')', '{', 'unsigned', 'short', 'value', ';', 'if', '(', 'endian', '==', 'L', 'SB', 'Endian', ')', 
'{', 'value', '=', '(', 'unsigned', 'short', ')', '(', '(', 'buffer', '[', '1', ']', '<<', '8', ')', '|', 
'buffer', '[', '0', ']', ')', ';', 'return', '(', '(', 'unsigned', 'short', ')', '(', 'value', '&', '0', 
'xffff', ')', ')', ';', '}', 'value', '=', '(', 'unsigned', 'short', ')', '(', '(', '(', '(', 'unsigned', 
'char', '*', ')', 'buffer', ')', '[', '0', ']', '<<', '8', ')', '|', '(', '(', 'unsigned', 'char', '*', ')', 
'buffer', ')', '[', '1', ']', ')', ';', 'return', '(', '(', 'unsigned', 'short', ')', '(', 'value', '&', 
'0', 'xffff', ')', ')', ';', '}']

Subword-tokens of the vulnerability repair

['<S2SV_ModStart>', 'unsigned', 'short', ')', '<S2SV_ModEnd>', 'buffer', '[', '1', 
'<S2SV_ModStart>', ']', '<<', '8', ';', 'value', '|=', '(', 'unsigned', 'short', ')', 
'<S2SV_ModEnd>', 'buffer', '[', '0', '<S2SV_ModStart>', '[', '0', ']', 
'<S2SV_ModEnd>', ';', 'return', '(', '<S2SV_ModStart>', ';', 'return', '(', 
'<S2SV_ModEnd>', 'value', '&', '0', 'xffff', '<S2SV_ModStart>', 'value', '&', '0', 
'xffff', '<S2SV_ModEnd>', ')', ';', '}', '<S2SV_ModStart>', 'unsigned', 'short', ')', 
'buffer', '<S2SV_ModEnd>', '[', '0', ']', '<S2SV_ModStart>', ']', '<<', '8', ';', 
'value', '|=', '<S2SV_ModEnd>', '(', 'unsigned', 'short', '<S2SV_ModStart>', 
'unsigned', 'short', ')', 'buffer', '[', '1', ']', ';', 'return', '<S2SV_ModStart>', '&', '0', 
'xffff', ')', '<S2SV_ModEnd>', ';', '}']

Repaired Function
809 809 static inline unsigned short ReadPropertyUnsignedShort(const 

EndianType endian,
810 810 const unsigned char *buffer)

811 811 {

812 812     unsigned short

813 813         value;

814 814     if (endian == LSBEndian)

815 815         {

- 816             value=(unsigned short) ((buffer[1] << 8) | buffer[0]);

- 817             return((unsigned short) (value & 0xffff));

+ 816             value=(unsigned short) buffer[1] << 8;

+ 817             value|=(unsigned short) buffer[0];

+ 818             return(value & 0xffff);

819 819         }

- 819     value=(unsigned short) ((((unsigned char *) buffer)[0] << 8) |

- 820         ((unsigned char *) buffer)[1]);

- 821     return((unsigned short) (value & 0xffff));

+ 820     value=(unsigned short) buffer[0] << 8;

+ 821     value|=(unsigned short) buffer[1];

+ 822     return(value & 0xffff);

823 823 }

Fig. 2. (CWE-125 Out-of-bounds Read) A real-world example [ImageMagick 2016] of vulnerability in a C function. In the

vulnerable function on the let, the value is calculated using (bufer[1] ń 8) | bufer[0] (i.e., line 816), which shits the second

byte of the bufer by 8 bits to the let and then tries to combine it with the first byte. This operation could lead to accessing

memory beyond the bufer’s bounds and result in undefined behavior. A similar vulnerability also occurs in the second

vulnerable block (i.e., lines 819-821). In the repaired function, the problematic byte-order conversion operations in both

vulnerable blocks have been restructured to ensure proper handling of byte manipulation and boundary checks. The key

change is in the handling of the byte-order conversion, where instead of performing the bit shit and combination in a

single step, the code is split into separate steps. This ensures that the operations involving byte manipulation are performed

sequentially and within the bufer’s boundaries.

(RQ3) Are AI-generated vulnerability repairs perceived as useful by software developers?

Results. Our survey study with 71 participants shows that 86% of participants perceive AI-generated
vulnerability repairs as useful. In addition, 80% of them consider adopting AI-generated repairs if they are
readily available and free of charge.

The Novelty & Contributions of this paper are as follows:

• A novel vulnerability repair framework based on object detection that uses vulnerability queries to generate
repair patches;

ACM Trans. Softw. Eng. Methodol.
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• A novel vulnerability mask that facilitates the repair model to locate vulnerable code tokens more accurately
during vulnerability query;

• A comprehensive evaluation of our proposed approach against other AVR approaches using a benchmark
dataset including real-world vulnerabilities; and

• An ablation study to assess the efectiveness of each component in our proposed approach.
• A user study to assess the usefulness of AI-generated vulnerability repairs from software developers’
perspective.

Paper Organization. Section 2 describes the problem deinition along with the technical details of our

proposed approach. Section 3 presents the experimental setup and Section 4 presents the experimental results.
Section 5 presents an additional discussion of our approach. Section 7 presents the related works. Section 8
discloses the threats to validity. Section 9 draws the conclusions.

CAT

CAT

Object Queries

No  

Object

Vulnerability Queries

No  

Object

No  

Repair

No  

Repair

Use object queries to locate bounding boxes Use vulnerability queries to locate vulnerable code

Object Detection Vulnerability Localization

Vulnerable  

Code Block

Vulnerable  

Code Block

Vulnerable Source Code

Fig. 3. Intuitively, not all code tokens in a program need to be repaired and the repair can be in multiple areas. Similarly, not

all pixels in an image has objects and the objects can appear in multiple locations in an image. Thus, in object detection,

object queries are used in VIT-based approaches [Carion et al. 2020; Wang et al. 2021b; Zhu et al. 2020] to predict bounding

boxes and locate objects. With a similar principle of object detection, we leverage vulnerability queries to atend more to the

vulnerable code tokens in the vulnerable code areas and generate repairs for them.

2 OUR PROPOSED APPROACH

2.1 Usage Scenario

Imagine a software development team that is particularly concerned about identifying and addressing vulnerabil-
ities within their functions and has decided to leverage our proposed VQM approach. In practice, they analyze
source code using static analysis tools like Cppcheck [Cppcheck [n. d.]] or deep learning-based vulnerability
prediction tools [Fu et al. 2023c] to identify potential vulnerabilities. However, such tools cannot suggest vul-
nerability repairs. Thus, they leverage our VQM framework to obtain repair patches suggested by AI models.
Finally, security experts on the team will validate the AI-generated patches before implementing them into their
software system.

2.2 Problem statement

Similar to previous studies [Chen et al. 2022; Fu et al. 2022], we focus on function-level vulnerability repair,
assuming all vulnerabilities can be resolved within the function-level scope. Our vulnerability repair approach can
handle ixing multiple vulnerable parts in a vulnerable function and satisfy three key behaviors (i.e., add, delete,
and replace) to ix vulnerabilities. The special tokens, ł<S2SV_ModStart>ž and ł<S2SV_ModEnd>ž are added
into repair patches to determine the behavior of add, delete, or replace, as detailed in Section 3.2 in Chen et al.’s
work [Chen et al. 2022]. In particular, the model will learn to generate three context tokens to match the repair
patches back to the vulnerable function and implement the repairs. For instance, in the right part of Figure 1, the

ACM Trans. Softw. Eng. Methodol.
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irst three repair tokens (łmsž, ł)ž, and ł{ž) and the last three repair tokens (ł)ž, łmsž, and ł->ž) are context tokens
used to match the repair tokens to the vulnerable function. For simplicity, we use a vulnerable function with one
vulnerable part as an example in Figure 1, however, the same repair manner can be repeated to ix vulnerable
functions with multiple vulnerable parts.
Assuming we have a source code data set consisting of vulnerable source code functions along with cor-

responding repair patches that repair the vulnerable parts of those functions. We denote the data set as
� =

{

(�1, �1), ..., (�� , �� )
}

, where �� is a vulnerable function and �� is its repair patch. Note that each �� is
not a complete function but a patch used to repair the vulnerable part in the corresponding �� as shown in
Figure 1. The mapping between vulnerable functions, �� , and repair patches, �� , has been completed by Chen et

al. Chen et al. [2022] through parsing the code diference between the vulnerable and the ixed version of the
source functions from real-world vulnerability datasets [Bhandari et al. 2021; Fan et al. 2020]. In this paper, we
leverage BPE algorithm [Sennrich et al. 2016] to tokenize �� and consider �� as a sequence of code tokens denoted
as �� = [�1, �2, ..., ��] where the code token � � , � = 1, ..., � could be a clean token or vulnerable token (i.e., the tokens
highlighted in red in Figure 1). Similarly, a repair patch �� = [�1, ..., �� ] where �� consists of � number of repair
tokens � � , � = 1, ..., � . Each code token � � and repair token � � will be embedded into a vector for the model to learn
its representation as detailed in Section 2.3. We deine this problem as a sequence-to-sequence code generation
task with an objective to capture vulnerable code tokens in �� to generate corresponding repair patch �� .
As presented in Figure 1, the vulnerable function IsValidSize only consists of one vulnerable code area (i.e.,

statement 45). In particular, those repair tokens (i.e., [�1, ..., �� ]) are only related to a few vulnerable tokens in the
vulnerable function. Thus, it is a challenging task to generate repair tokens speciically for the vulnerable code
area. To address this challenge, we propose vulnerability queries and masks to guide our repair model to pay
more attention to the vulnerable code areas when generating their corresponding repair tokens. In what follows,
we illustrate the technical details of our approach.

Vulnerability  

Repair 

Encoders

Input

r0 = SR

VQ1

r1 r2 r3 rk rk+1 = ER

Linear Layer

r1 r2 rk−1

…

rk

…

HL
enc M(xi)

xi

Vulnerability Query Mask M(xi)

VQ2 VQ3 VQk VQk+1

…
Cross-Attention  

with Vulnerability Mask 

Vulnerability Repair Decoders

Fig. 4. An overview architecture of our VQM approach. Input tokens �� = [�1, ..., ��] and vulnerability masks� (�� ) are input

to encoders that output the embeddings of input tokens ��
��� , where� (�� ) helps to emphasize the vulnerable embeddings.

In decoders, each vulnerability query ��� is initialized from the previous repair token ��−1, which is forwarded through

multiple decoder layers followed by a linear layer to generate a repair token �� . In each decoder, a cross-atention with� (�� )

to emphasize vulnerable embeddings is leveraged to cross-match ��� and ��
��� and generate repairs corresponding to the

vulnerable tokens.
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2.3 Vulnerability Repair Via Vulnerability uery and Mask

Our approach is inspired by the VIT-based approaches [Carion et al. 2020; Wang et al. 2021b; Zhu et al. 2020] for
object detection where we link detecting spatial objects in an image for predicting bounding boxes to localizing
vulnerable code tokens in a source code for generating the repair tokens. Our model consists of an encoder to
produce code token embeddings for code tokens and a decoder to generate repair tokens.
Both encoder and decoder are developed based on the transformer architecture [Vaswani et al. 2017]. The

main component of the encoder is multi-head self-attentions with the aim of learning code token embeddings.
Similar to DeTR [Carion et al. 2020], the decoder utilizes both multi-head self-attentions and cross-attentions.
The purpose of the cross-attentions is to cross-match vulnerability queries and their corresponding vulnerable
code tokens in a vulnerable area. Ideally, when vulnerability queries achieve good matches with their vulnerable
code tokens, they possess suicient information to generate repair tokens.
Additionally, to orient the matching process for attending more to vulnerable code tokens inside a source

code, we propose to learn a vulnerability mask and apply it to both the encoder self-attention and decoder
cross-attention mechanism. Particularly, we rely on the information on vulnerable tokens to train an additional
model that outputs the possibility of a code token being a vulnerable token. We then base on these vulnerable
scores to conduct a vulnerability mask.

In what follows, we present the technicality of the vulnerability repair encoder, the vulnerability repair decoder,
and how to conduct and incorporate vulnerability masks into our framework.

2.3.1 Vulnerability Repair Encoder. The purpose of the encoder is to produce code token embeddings for a given
source code. Each token is embedded into a vector in R�=768 by an embedding layer and input to the irst encoder
block. A stack of encoder blocks is leveraged to encode the representation for an embedded sequence through
their self-attention layers followed by feed-forward neural networks, and each encoder block can be described as
follows:

��
= �� (���������(� �−1

��� )) + � �−1
���

� �
��� = �� (��� (�� ) +�� )

where the hidden states from the previous encoder block � �−1
��� forwards through a multi-head self-attention

��������� followed by a 2-layer feed-forward neural network ��� , and a layer normalization �� . The process
will iterate until we obtain the last encoder hidden states ��

��� to represent the vulnerable function. Here we note
that � is the number of encoder blocks applied and ��

��� contains the code token embeddings.

2.3.2 Vulnerability Repair Decoder. Input to the vulnerability repair decoder is the vulnerability queries (VQ),
each of which aims to match and capture information on vulnerable code tokens in a given source code.

The irst VQ embeddings �0
= [�01, ..., �

0
�
] are conducted and fed through several following decoder blocks. In

each block, we apply both multi-head self-attention and cross-attention as follows:

�̂�
= �� (���������(��−1)) +��−1

��
����� = �� (���������(�̂� , ��

��� )) +�
�−1

��
= �� (��� (��

����� ) +��
����� )

where ��
��� is the encoder output.

It is worth noting that the cross-attention ��������� assists us in cross-matching the vulnerability query
embeddings ��

= [��0, ..., �
�
�
] and the code token embeddings. If trained appropriately, the vulnerability query

embeddings��0, ..., �
�
�
attend and emphasize more the vulnerable code token embeddings in the vulnerable function,

which inally contain suicient information to generate the repair tokens.

ACM Trans. Softw. Eng. Methodol.
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Eventually, we obtain the output VQ embeddings ��
= [��0 , ..., �

�
�
] where � is the number of the decoder

blocks applied. On top of these VQ embeddings, we predict the repair tokens �1, ..., �� . Speciically, we dedicate a
linear layer on each VQ embedding ��0 , ..., �

�
�
and aim to predict �1, ..., �� and ��+1 = �� (i.e., the end repair token)

by maximizing the likelihood with respect to a mini-batch of �� :

� (�� | �� ) = � (�1, ..., �� | �1, ..., ��) =

�
∏

�=0

� (� �+1 | �
�
� ) (1)

where �� = [�1, ..., ��] is the source code and �� = [�1, ..., �� ] is the corresponding repair patch.
The next arising question is how to initialize the irst VQ embeddings�0

= [�00, ..., �
0
�
]. Diferent from VIT-based

object detection approaches [Carion et al. 2020; Wang et al. 2021b; Zhu et al. 2020], we do not initialize the
irst VQ embeddings �0

= [�00, ..., �
0
�
] randomly. Indeed, we initialize �0

= [�00, ..., �
0
�
] more informatively by

setting �00 = �� (i.e., the speciic embedding for the start repairing token), �0� = � � , � = 1, ..., � . By this informative

initialization, we reframe the vulnerability repair problem as the task of generating repair patches in the source
code.
The inference process is hence very natural. Given a source code �� = [�1, ..., ��], we pass it through the

vulnerability repair encoder to work out the encoder output ��
��� . We start with the irst VQ embedding �00 = ��

and feed to the vulnerability repair decoder to generate the irst repair token �1. We then set VQ embedding
�1 = �1 and feed it to the vulnerability repair decoder to generate the second repair token �2. We repeat this
process until we reach the �� token.

As mentioned before, the key factor to the success of our approach is how to accurately cross-match between
the vulnerability queries and the vulnerable code tokens of a given source code. Currently, we expect that the
cross-attention mechanism guided by maximizing the likelihood in Eq. (1) supports us in realizing this. To further
strengthen the cross-matching, we learn a vulnerability mask that highly focuses on the vulnerable code tokens
and then apply it to the encoder self-attention and the decoder cross-attention mechanism.

2.3.3 Learning and applying vulnerability mask. In what follows, we present how to learn a vulnerability mask
and then apply it to our model.

Learning vulnerability mask. We note that for our dataset � =

{

(�1, �1), ..., (�� , �� )
}

, each vulnerable
function �� = [�1, ..., ��] is a sequence of code token in which we know exactly the vulnerable scope or information
if a code token � � belongs to a vulnerable statement. In other words, we also possess the token-level vulnerable
label �� = [�1, ..., ��] wherein� � = 1 means that the code token � � belongs to a vulnerable statement and otherwise.
For example, in the source code presented in Figure 1, the code tokens highlighted in red are the vulnerable code
tokens labelled 1.

We now take advantage of this crucial information to learn vulnerability masks. Basically, we train an additional
model to predict the vulnerability masks. Speciically, we leverage a pre-trained CodeBERT [Feng et al. 2020]
model in learning the vulnerability masks. Each �� in �� is embedded into a vector in R�=768 and forwarded
through 12 layers of the BERT architecture. We then use a global max pooling layer and a sigmoid activation to
obtain the probability mask�(�� ) and minimize the following cross-entropy loss with respect to a mini-batch of
�� :

� (�� , �� ) = −

�︁

�=1

[

� � log� � (�� ) + (1 − � � ) log (1 −� � (�� ))
]

(2)

Finally, to sharpen the vulnerability mask, we apply the following transformation with a threshold value of 0.5:

� (�� ) =
�

1 + exp{−� (�(�� ) − 0.5)}

ACM Trans. Softw. Eng. Methodol.



Vision Transformer-Inspired Automated Vulnerability Repair • 9

β = 1

α = 10

β = 1
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Fig. 5. The plots of the vulnerability mask transformation to see how �, � control the sharpness of vulnerability mask.

where � > 0 and � > 0 are two parameters to control the sharpness of the vulnerability mask.
In Figure 5, we visualize how � and � afect the vulnerability masks. It can be seen that � controls how fast

the curve gets saturated and a large � value forms a line approaching vertical at � = 0.5. On the other hand, �
controls the gap between vulnerable and benign scores. We use a high value of � = 1000 so the model prediction
threshold can approach a common threshold value of 0.5. Tokens are classiied as vulnerable by the model if their
prediction probability surpasses 0.5; otherwise, they are categorized as benign. We chose a relatively low value
of � = 0.1 to transform our vulnerability mask. Notably, a high � value would result in higher masking values.
However, such high masking values may interfere with the hidden representation of our main repair encoders
and decoders. Thus, we select a low � value to slightly adjust the self-attention weights and guide the repair
model.

Applying vulnerability mask to our model. Our vulnerability mask inds application in rectifying vulnerable
code segments requiring either łreplacež or łdeletež actions for resolution. In scenarios involving replacement,
our vulnerability mask emphasizes the vulnerable section to be replaced by repair tokens. In the context of
deletion, the mask underscores the vulnerable code slated for removal. However, it is important to note that in
scenarios requiring "addition," our vulnerability mask will not highlight anything, as no vulnerable code needs to
be highlighted.
We incorporate our vulnerability mask into both the encoders’ self-attention output and the decoders’ cross-

attention. For the encoder, we apply as follows:

��
= ��

(

���������(� �−1
��� ) +� (�� ) ⊗ ���������(� �−1

��� )
)

+� �−1
���

� �
��� = �� (��� (�� ) +�� )

where ⊗ is the element-wise product which returns [� � (�� )�
�
� ]
�
�=1 with �� = ���������(� �−1

��� ).

For the cross-attention in the decoder, we apply as follows:

�̂�
= �� (���������(��−1)) +��−1

��
����� = ��

(

���������(�̂� , ��
��� +� (�� ) ⊗ ��

��� )
)

+��−1

��
= �� (��� (��

����� ) +��
����� )

Finally, the entire framework of our approach encapsulated the vulnerability repair encoder, vulnerability
repair decoder, and how to incorporate vulnerability masks are summarized in Figure 4.

3 EXPERIMENTAL DESIGN

3.1 Research uestions

In this paper, we aim to evaluate the efectiveness of our proposed VQM approach by answering our two research
questions. In RQ1, we compare our approach with existing baseline methods for vulnerability repairs as described
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in Section 3.2. In RQ2, we focus on studying the proposed components in our VQM approach and present an
ablation study. Below, we present the motivation for our two research questions.
(RQ1) What is the accuracy of our VQM approach for generating software vulnerability repairs?

Recently, transformer-based approaches have been leveraged for the automated vulnerability repair (AVR)
problem [Chen et al. 2022; Chi et al. 2022; Fu et al. 2022]. While a vulnerable function may only consist of a few
vulnerable codes to repair as shown in Figure 1, previous approaches can only implicitly learn the matching
between vulnerable code areas and their repairs. On the other hand, we propose our VQM approach to explicitly
guide the repair model to attend to those vulnerable areas and generate corresponding repairs. We formulate this
RQ to assess the accuracy of VQM when comparing it to six other baseline approaches for the AVR introduced in
Section 3.2.
(RQ2) What are the contributions of each component of our VQM approach? Our VQM involves

two key components, i.e., vulnerability queries (VQs) and vulnerability masks (VMs), to help the transformer
model focus more on vulnerable code areas during the generation of repairs. However, little is known about the
efectiveness of applying our proposed components on top of the transformer encoder-decoder model. Thus, we
formulate this RQ and conduct an ablation study regarding the proposed VQs and VMs to assess their efects on
the transformer model.

3.2 Baseline approaches

Our approach is evaluated against the leading automated vulnerability repair (AVR) methods, namely VRe-
pair [Chen et al. 2022] and VulRepair [Fu et al. 2022], to assess its efectiveness. Moreover, we consider seq2seq-
based AVR methods like TFix [Berabi et al. 2021] and SequenceR [Chen et al. 2019] as baseline approaches
for comparison. Additionally, we compare our approach with state-of-the-art pre-trained transformer models
designed for source code, such as CodeBERT [Feng et al. 2020] and GraphCodeBERT [Guo et al. 2021], which
are widely employed for addressing tasks related to source code. This comprehensive evaluation allows us to
establish the advantages and novel contributions of our approach in the context of software vulnerability repair.
The GPT2-CSRC approach is also included to compare our method with a decoder-only pre-trained model. In
addition, we include automated program repair (APR) approaches such as CURE [Jiang et al. 2021] and DLFix [Li
et al. 2020]. The details of baseline methods included in our evaluation are as follows:

• VRepair: A vanilla transformer architecture for the AVR task [Chen et al. 2022]. We replicate VRepair by
following the instructions provided by Chen et al.to build and train the model.

• VulRepair: A T5-based approach [Fu et al. 2022] that relies on a large language model pre-trained on
source code corpus [Wang et al. 2021a]. We reproduce VulRepair using the repository provided by Fu et al..

• TFix: A T5-based approach [Berabi et al. 2021] that relies on a large language model pre-trained on natural
language corpus [Rafel et al. 2020]. We reproduce TFix using the repository provided by Berabi et al..

• SequenceR: An RNN-based approach with bi-directional LSTM encoders and unidirectional LSTM de-
coders [Chen et al. 2019]. We replicate SequenceR by following the instructions provided by Chen et al.to
build and train the model.

• CodeBERT: A BERT-based large language model for source code [Feng et al. 2020], which has been
leveraged to repair Java programs [Mashhadi and Hemmati 2021]. We reproduce CodeBERT using the
repository provided by Feng et al..

• GraphCodeBERT: An extensive version of CodeBERT by considering the Data Flow Graph (DFG) during
training [Guo et al. 2021]. We reproduce GraphCodeBERT using the repository provided by Guo et al..

• GPT2-CSRC: Utilizing a decoder-only model based on GPT-2 and a BPE tokenizer, GPT2-CSRC has
undergone pre-training on an extensive dataset of approximately 17GB of C/C++ code. This dataset was
curated from the top 10,000 most widely adopted Debian packages [Pearce et al. 2023].
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• CURE: An automated program repair approach driven by code awareness [Jiang et al. 2021], this method
harnesses the CoNut architecture [Lutellier et al. 2020] and integrates a decoder-only CodeGPT model
alongside a BPE tokenizer. Moreover, during beam search, a code-aware search strategy is applied to
enhance the output generation process.

• DLFix: DLFix is a program repair technique built upon Tree-LSTM [Li et al. 2020], a framework that utilizes
abstract syntax trees (ASTs) as its input, standardized across variable names. To transform textual input
into a vector space, Word2Vec embeddings [Mikolov et al. 2013] are used. Additionally, DLFix incorporates
strategies such as patch re-ranking and program analysis ilters to enhance the output generated by the
model.

3.3 Experimental Dataset

We use the same experimental dataset provided by Chen et al. [2022] to evaluate our approach. The dataset
consists of Big-Vul [Fan et al. 2020] and CVEixes [Bhandari et al. 2021] vulnerability ix corpus written in C/C++.
The Big-Vul dataset was collected from 348 open-source GitHub projects by crawling the Common Vulnerabilities
and Exposures (CVE) database. In total, Big-Vul contains 3,754 code vulnerabilities from 2002 to 2019. On the
other hand, the CVEixes dataset was constructed similarly to the Big-Vul, which consists of 5,365 vulnerabilities
collected from 1,754 projects from 1999 to 2021. Speciically, we leverage both datasets pre-processed by Chen
et al. [2022] and obtain 5,417 samples spanning 2,095 diferent vulnerabilities (i.e., CVE-ID) after dropping null
and duplicate samples.

Table 1. Training scheme of our VQM approach. Note. #: Scheme for training the mask prediction model; *: Scheme for

training the repair model.

Training Data ������ ������ Optim Sch. LR Grad Clip Bhz Epo

#Pre-train Bug Fix 512 N/A AdamW Linear 1e-4 1.0 16 75

#Fine-tune Vul Fix 512 N/A AdamW Linear 1e-4 1.0 16 75

*Pre-train Bug Fix 512 256 AdamW Linear 1e-4 1.0 8 75

*Fine-tune Vul Fix 512 256 AdamW Linear 1e-4 1.0 8 75

3.4 Parameter Seting

We split the data into 70% for training, 10% for validation, and 20% for testing. We use a pre-trained T5 model
provided byWang et al. [2021a], whichwas pre-trained usingmultiple denoising objectives related to programming
languages. The hyperparameter settings used to reproduce our mask model and repair model are presented in
Table 1.

3.5 Model Training

Given that the existing vulnerability repair dataset only contains limited samples, pre-training on a larger bug
ix dataset can further enhance the performance of a vulnerability repair model as demonstrated by Chen et al.
[2022]. The intuition is that the software vulnerability is a sub-domain of the software defect (i.e., bugs) domain
which increases the transferability between the two tasks. Thus, for each model including ours, we irst pre-train
on the bug-ix dataset provided by Chen et al. [2022], which consists of 23,607 samples to obtain more meaningful
pre-trained weights for the vulnerability repair downstream task. Note that the bug ix dataset is not overlapping
with our experimental dataset introduced in Section 3.3. We report the details of our training settings in our
replication package at https://github.com/awsm-research/VQM.
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4 EXPERIMENTAL RESULTS

Table 2. (Main results) The comparison between our VQM approach and other baselines. Accuracy is presented in percentage.

Beam=k shows the measure of %PP. We conducted the experiments five times with diferent random seeds and reported the

mean performance plus minus standard deviation.

Methods Beam=1 Beam=3 Beam=5

VQM(Ours) 32.33±1.12 42.72±0.86 45.14±0.86

VulRepair 29.65±1.27 39.85±1.31 42.79±1.15
TFix 15.41±1.96 26.7±1.69 30±1.77

GPT2-CSRC 11.93±0.71 19.27±0.65 24.77±0.81
CURE 11.19±0.53 20.55±1.03 26.06±0.65

GraphCodeBERT 9.15±0.43 16.83±0.85 21.38±0.54
CodeBERT 7.47±0.61 13.69±0.37 16.85±0.17
VRepair 5.36±0.55 10.31±0.29 13.12±0.53
DLFix 0.51±0.08 1.05±0.15 1.53±0.23

SequenceR 0.0±0 0.44±0.13 0.53±0.27

(RQ1) What is the accuracy of our VQM approach for generating sotware vulnerability repairs?

Approach. To answer this RQ, we evaluate the accuracy of vulnerability repair approaches using the percentage

of perfect predictions (%PP) similar to previous AVR studies [Chen et al. 2022; Fu et al. 2022]. If any of the repairs
generated by the beam search is exactly the same as the ground-truth label (i.e., human-written vulnerable repair),
it is considered as a correct prediction. Thus, the overall %PP across all testing data is computed as the number of
correct predictions divided by the number of testing samples. The %PP measures how much of the predictions
generated by each approach can be applied to the vulnerable functions, where the quality and the applicability of
those correct repairs are guaranteed by the human-written ground truths.

We use the dataset described in Section 3.3 and compare our proposed method with the baselines introduced
in Section 3.2. To ensure the robustness of our experimental results, we run our experiment ive times for each
approach by setting diferent random seeds. During beam search, we use ���� ∈ [1, 3, 5] to evaluate all of the
methods. Such beam settings lead to fewer repair candidates generated by the models, which would be more
practical in real-world scenarios so developers will not need to inspect many repair candidates.
Result. The experimental results are presented in Table 2. Regardless of the number of beams, our

VQM method outperforms all baselines and achieves the best %PP. When comparing only the top-1 repair
candidates (i.e., ���� = 1), our VQM is 2.68% (VulRepair) and 16.92% (TFix) better than pre-trained transformer
encoder-decoder approaches, 21% (CURE) and 31% (DLFix) better than APR approaches, 23.18% (CodeBERT) and
24.86% (GraphCodeBERT) better than BERT-based approaches, and 20% better than the decoder-only approach,
GPT2-CSRC.

The improvement of our VQM approach over previous state-of-the-art transformer encoder-decoder methods
(e.g., VulRepair, TFix) has to do with our proposed mechanism to help the repair model focus on vulnerable areas
while generating the repairs. The decoders in VulRepair and TFix attend to each token embedding (including
both vulnerable and benign tokens) encoded by encoders without explicitly learning the cross-match between
vulnerable token embeddings and their repair token embeddings. On the other hand, we introduce vulnerability
queries (VQs) and vulnerability masks (VMs) in our VQM to explicitly learn the cross-match between vulnerable
token embeddings and their repair token embeddings. Our VQs and VMs help the decoder bias toward vulnerable
token embeddings encoded by encoders during repair generation, hence leading to more accurate vulnerability
repairs.
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Table 3. (Ablation results) The comparison between our proposed method and four other variants. Accuracy is presented in

percentage.

Methods Beam=1 Beam=3 Beam=5

Perfect Mask Enc + Perfect Mask Dec 33.76 44.31 46.88

Vul Mask Enc + Vul Mask Dec (ours) 33.21 44.04 46.06
Vul Mask Enc 32.75 43.49 46.15

Vul Mask Dec 32.84 43.85 45.69
w/o Vul Mask 29.82 39.72 43.67
with Vul Query Randomly Initialized 12.57 24.95 28.81
with No Bug Pre-trained Vul Mask 26.42 39.63 41.74

These results conirm that our proposed method of cross-matching vulnerability queries with vulnerable
code tokens can help the model encode a more meaningful representation of a vulnerable function and decode
the corresponding repair more accurately. In what follows, we provide a comprehensive ablation study of our
proposed vulnerability queries and masks.

Table 4. Compare our method with baselines, where all the methods are not pre-trained on the bug-fix data [Chen et al.

2022]. Accuracy is presented in percentage.

Methods Beam=1 Beam=3 Beam=5

VQM 5.32 8.81 9.72

VulRepair 4.13 6.06 7.43
TFix 2.75 4.4 4.68

GraphCodeBERT 2.57 4.13 5.23
CodeBERT 1.56 2.29 2.75
VRepair 0.09 0.55 0.92

SequenceR 0 0 0

(RQ2) What are the contributions of each component of our VQM approach?

Approach. We introduce ive variants of our approach to assess the efectiveness of our proposed vulnerability

queries (VQs) and vulnerability masks (VMs) as follows:

• Perfect Vulnerability Masking in Encoders and Decoders: This method uses an identical architecture
as our VQM, however, the perfect vulnerability masks (i.e., the exact location of each vulnerable token) are
provided instead of predicted by a localization model.

• Vulnerability Masks in Encoders: This method only applies vulnerability masks on the self-attention out-
put of each encoder to help the model focus more on vulnerable tokens when encoding the representations
for a vulnerable function.

• Vulnerability Masks in Decoders: This method only applies vulnerability masks on the decoder cross-
attention when cross-matching vulnerability queries and vulnerable code tokens to support the model to
focus more on vulnerable tokens when generating repair tokens.

• Without Vulnerability Masks: This method is a plain transformer encoder-decoder architecture that
applies no vulnerability masks.

• With Vulnerability Query Randomly Initialized: This method applies vulnerability masks in both
encoders and decoders while vulnerability queries are randomly initialized at the start of training.
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• With No Bug Pre-trained Vul Mask: This method applies vulnerability masks in both encoders and
decoders while the vulnerability masks are only trained on the vulnerability repair dataset without pre-
training on the bug-ix dataset.

In VQM, we train a separate model to predict VMs that apply to both encoders and decoders. In theory,
the repair model should achieve better repair accuracy when applying more accurate VMs to its encoders and
decoders. Thus, in the irst variant, we aim to study whether leveraging perfect VMs (i.e., using the ground truths
of vulnerability localization as VMs) can achieve better performance. Our proposed VMs can be applied to both
the self-attention of encoders and the cross-attention of decoders. In particular, our VQM approach leverages VMs
for both encoders and decoders. We further introduce three variants to study the efectiveness of VMs, i.e., (1)
applying VMs to the self-attention of encoders; (2) applying VMs to the cross-attention of decoders; (3) without
applying VMs; and (4) applying VMs trained only on the vulnerability repair dataset. Moreover, we proposed to
initialize VQs based on the repair tokens in Section 2.3.2. We introduce a variant that randomly initializes VQs
during training to compare with our proposed initialization method. In addition, the last variant is used to study
the efectiveness of pre-training on the bug-ix corpus as described in Section 3.5.

We conduct the experiment using the dataset introduced in Section 3.3 and the same %PP measure as in RQ1
with ���� ∈ [1, 3, 5].
Result. The experimental results are shown in Table 3. Our approach to using vulnerability queries (VQs)

along with vulnerabilitymasks (VMs) inside both encoders and decoders achieves the best performance

for ���� ∈ [1, 3] and comparable performance for ���� = 5.
It can be seen that our proposed approach can achieve the best performance no matter the beam size when using

the vulnerability localization ground truths as VMs (i.e., perfect masks). This result highlights the efectiveness of
our proposed vulnerability masks. Moreover, applying the VMs is beneicial for both encoder self-attention and
decoder cross-attention. It enhances the %PP by 2.93% when applied to encoders while gaining a %PP of 3.02%
when applied to decoders, and the variants with VMs consistently outperform the variant without using any
VMs. While applying the VMs on either encoders or decoders is beneicial, our proposed method to leverage the
mask on both sides achieves better results for ���� ∈ [1, 3] and comparable results for ���� = 5.
Furthermore, łWith No Bug Pre-trained Vul Maskž attains a beam 5 accuracy of 41.74%, registering a 4%

reduction compared to our proposed method. These results underscore a crucial insight: the training process that
encompasses the bug-ix dataset, featuring a broader spectrum of general bugs with a larger sample size, carries
paramount signiicance.

In terms of the vulnerability queries (VQs), it can be seen that our approach to initialize the VQ embeddings based
on repair tokens during training consistently outperforms the randomly initialized VQs. However, the random
VQ embeddings method still outperforms baselines such as CodeBERT and GraphCodeBERT, highlighting the
efectiveness of using vulnerability queries with cross-attention (as proposed in Section 2.3.2) for our vulnerability
repair task.
In addition, the results shown in Table 4 indicate the efectiveness of pre-training on bug-ix corpus and

correspond to the inding by Chen et al. [2022] that the knowledge from the general bug ix corpus can be
transferred to beneit the performance of AVR models. Our method still outperforms all baseline approaches.

5 DISCUSSION

Our experiments have conirmed the performance advancement of our VQM approach over other AVR baseline
approaches. In this section, we conduct further analysis to discuss whether our approach applies to repairing
common vulnerabilities. Moreover, the data imbalance problem is common in vulnerability datasets [Das et al.
2021; Wang et al. 2020] where some vulnerability types (i.e., CWE-IDs) are common and easy to collect into
the dataset while others are rare. Thus, we analyze the impact of imbalanced data frequencies across diferent
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Table 5. The %PP of our VQM approach across the top 25 most dangerous CWE-IDs in 2022. The %PP is shown based on the

beam search results where Beam=5.

Rank ID %PP

1 CWE-787 (Out-of-bounds Write) 50% (13/26)

3 CWE-89 (SQL Injection) 100% (2/2)

4 CWE-20 (Improper Input Validation) 33% (24/72)

5 CWE-125 (Out-of-bounds Read) 42% (48/113)

6 CWE-78 (OS Command Injection) 33% (1/3)

7 CWE-416 (Use After Free) 31% (9/29)

8 CWE-22 (Path Traversal) 50% (1/2)

11 CWE-476 (NULL Pointer Dereference) 31% (11/36)

13 CWE-190 (Integer Overlow or Wraparound) 54% (19/35)

16 CWE-862 (Missing Authorization) 100% (1/1)

17 CWE-77 (Command Injection) 67% (2/3)

19 CWE-119 (Memory Corruption) 75% (223/296)

22 CWE-362 (Race Condition) 9% (3/34)

23 CWE-400 (Uncontrolled Resource Consumption) 55% (11/20)

Average 55% (368/672)

CWE-IDs on our VQM approach. Last but not least, we analyze the impact of our vulnerability mask on repair
decoders’ cross-attention to answer whether our vulnerability masks can truly help enhance the awareness of
decoders’ vulnerability queries in vulnerable code areas as proposed in Section 2.3.

5.1 Can our VQM repair the common dangerous vulnerability types (i.e., CWE-IDs)?

To investigate whether our VQM approach can repair common dangerous real-world vulnerabilities, we evaluate
our approach using testing data based on the 2022 CWE Top-25 Most Dangerous Software Weaknesses released
by the CWE community [CWE 2022]. Among the Top-25 dangerous CWE-IDs, 14 of them are involved in our
testing data. The results are presented in Table 5 with ���� = 5 (the repair model generates 5 repair candidates
for each vulnerable function). We ind that our approach can generate correct human-written repairs for 41%
( 87
213 ) of the Top-5 dangerous CWE-IDs. On average, our approach can correctly repair 55% ( 368672 ) of the vulnerable
functions afected by the Top-25 most dangerous CWE-IDs, which is better than the average performance of our
approach across all CWE-IDs (i.e., 45.14%). These results imply the potential applicability of our VQM approach
which could be used to repair common vulnerabilities automatically.

5.2 How does our VQM perform across diferent vulnerability types that have diferent data
frequencies in our experimental dataset?

We visualize the %PP across all CWE-IDs in our testing data as a bar graph to explore our VQM’s performance
for diferent CWE-IDs. In addition, we show the frequency of each CWE-ID for both training and testing data
as two line graphs to explore the relationship between the frequency of samples and the performance of our
method. Note that the ticks of the Y axis on the left are for the %PP metric while those on the right are for the
data frequency of each CWE-ID.
We found that the frequency of training and testing samples are not highly correlated with the performance

of our method. This indicates that automated vulnerability repair (AVR) is a challenging problem in that high-
frequency samples may not guarantee the repair model’s performance.

As shown in Figure 6, the performance of our approach varies for each CWE-ID. Our approach performs well on
some of the CWE-IDs that all testing samples can be correctly repaired. In particular, we found that our approach
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Fig. 6. The performance analysis of our VQM accross diferent CWE-IDs. The bar chart represents the %PP while the blue

line is the training frequency and the red line is the testing frequency across all vulnerability types. Note that the ticks of the

Y axis on the let are for the %PP metric while those on the right are for the data frequency of each CWE-ID.

can achieve better accuracy for bufer-related errors such as CWE-119, CWE-190, CWE-787, and CWE-125, where
our approach achieves 52% better than its average performance. To comprehensively assess the landscape, we
also focus on two representative baseline methods, namely VulRepair and TFix, and evaluate their performances
across various CWE-IDs. It is noteworthy that these baseline methods exhibit analogous characteristics to the
performance trends of our approach. Speciically, both VulRepair and TFix showcase superior performance in the
realm of bufer-related errors, surpassing their average performance by 53% and 47%, respectively.
These bufer-related CWE-IDs, which our approach and baseline methods can address with higher accuracy,

are primarily centered around memory management concerns. These vulnerabilities encompass improper man-
agement of memory bufers, including arrays, strings, and other data structures, ultimately leading to potential
memory corruption, crashes, or unauthorized memory access. Despite the criticality of these vulnerabilities and
the complexity involved in identifying and mitigating them, they tend to arise from speciic code segments and
memory management practices.

These analyses collectively underscore the strides achieved by deep learning-based methodologies in advancing
the proiciency of generating code repairs, particularly in the domain of bufer-related errors in C/C++ code.

In addition, we found that there are two vulnerability types (i.e., CWE-310 ś Cryptographic Issues and CWE-552
ś Files or Directories Accessible to External Parties) that can only be ixed by our VQM approach but not other
baselines.

Compared to the aforementioned bufer-related CWE-IDs, CWE-310 and CWE-552 address broader concerns
related to cryptography and access controls. CWE-310 involves vulnerabilities related to cryptographic opera-
tions, which can be complex due to the intricacies of cryptography algorithms, key management, and proper
implementation of cryptographic functions. CWE-552 pertains to vulnerabilities related to the exposure of iles or
directories to external parties, which can involve complex access control mechanisms, permissions management,
and overall system design. These indings underscore the potential of our proposed technique to comprehend
code structures better, enhancing transformer encoders and decoders in generating accurate repairs for intricate
cryptography and access control vulnerabilities.
Finally, it’s worth noting that despite the introduction of our vulnerability query and masking techniques,

certain vulnerabilities that are infrequent within our dataset pose a persistent challenge for accurate repair. For
instance, our approach faced diiculties in efectively addressing vulnerabilities like CWE-444 (Inconsistent
Interpretation of HTTP Requests) and CWE-285 (Improper Authorization). This highlights the challenge of
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automated vulnerability repair, demanding the model to address a wide spectrum of vulnerabilities, including
those that manifest infrequently, thus obliging the model to glean insights from a limited dataset.
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Fig. 7. The comparison of the cross-atention weights of our VQM approach and the variant, VQM w/o VM. The red bars

indicate the cross-atention weights for vulnerable code areas while the green bars indicate the cross-atention weights for

benign code areas.

5.3 Does our proposed vulnerability mask help highlight vulnerable code areas during vulnerability
repair?

To investigate whether our proposed vulnerability mask (VMs) technique helps the repair decoders focus more on
vulnerable code areas during repair generation, we analyze the cross-attention weights between the embeddings
of vulnerable functions and embeddings of generated repair patches. We compare the cross-attention weights of
our VQM approach with a variant without applying VMs (i.e., VQM w/o VM). We only remove the VM component
to produce this variant while other components remain the same as our VQM. We analyze the cross-attention
weights of each approach on correctly repaired testing samples.

The results are presented in Figure 7. We ind that our VQM approach (applying VMs) has higher cross-attention
mean (1.03 compared with the variant’s 0.75) and median (0.84 compared with the variant’s 0.61) weights for
vulnerable code areas than the approach without applying VMs. Moreover, the cross-attention weights for benign
code areas remain low and similar to the variant. For our VQM approach, the gaps between the cross-attention
weights of the vulnerable code areas and benign code areas are 0.68 (1.03-0.35) and 0.51 (0.84-0.33) for mean
and median, which is bigger than the variant’s 0.39 (0.75-0.36) and 0.28 (0.61-0.33). These results conirm that
our VMs can help our vulnerability queries in decoders focus more on vulnerable code areas and have better
cross-attention contrast between vulnerable and benign code areas.
To demonstrate that our VMs can help decoders’ cross-attention focus more on vulnerable code areas, we

visualize the cross-attention maps of the two approaches, applying VMs (i.e., VQM) and without applying VMs.
We visualize two vulnerable functions that are correctly repaired by both approaches in our testing set. We
present the cross-attention visualization in Figure 8, where axis X is embeddings of the repair patches (i.e.,
Vulnerability Queries) while axis Y is embeddings of the vulnerable functions. Our approach with VMs has higher
attention weights than the one without using VMs for the multi-scope (7 vulnerable code areas - the right part)
vulnerable function. The visualization aligns with our analysis presented in Figure 7. This implies our VMs can
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Fig. 8. The visualization of the cross-atention weights between embeddings of generated repair patches (i.e., Vulnerability

ueries - axis X) and embeddings of vulnerable functions (axis Y). The ground-truth vulnerable code areas are highlighted in

red boxes. It can be seen that the cross-atention map is more highly activated for vulnerable code areas when applying

vulnerability masks (VMs). In other words, our VMs help beter distinguish the vulnerable and benign code areas.

help decoders focus more on vulnerable code areas when generating their corresponding repair codes through
vulnerability queries, which may lead to better repair accuracy as demonstrated in our RQ1.

Table 6. (Discussion Results) The efectiveness of applying our vulnerability masks to a decoder-only transformer architecture.

Methods Beam=1 Beam=3 Beam=5

GPT2-CSRC with Vulnerability Masks 14.86 26.51 31.93

GPT2-CSRC 11.93 19.27 24.77

5.4 Can our proposed vulnerability mask be applied to decoder-only transformer architectures?

As our proposed vulnerability masks (VMs) are expressly designed to seamlessly integrate with the self-attention
mechanism intrinsic to transformer models, the feasibility of their application to decoder-only transformers
becomes evident. To explore the potential enhancement our VMs might confer upon decoder-only models, we
proceed to integrate them with GPT2-CSRC [Pearce et al. 2023], one of the prominent decoder-only program
repair approaches. Notably, this integration involves applying our VMs to the self-attention mechanisms of the
decoders, a strategy detailed in Section 2.3.3.
The experimental results are presented in Table 6. Evidently, the integration of our vulnerability masks

(VMs) consistently yields performance enhancements in the context of the GPT2-CSRC approach. Noteworthy
improvements are discernible across various beam widths, notably augmenting performance from 12% to 15%
for ���� = 1, from 19% to 27% for ���� = 3, and from 25% to 32% for ���� = 5. These results highlight the
efectiveness of our proposed masking technique for the transformer’s self-attention mechanism.
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6 A USER STUDY OF AI-GENERATED VULNERABILITY REPAIRS

In addition to the performance evaluation of our approach in RQ1 and RQ2, we conducted a user study with 71
practitioners with software security backgrounds to evaluate the usefulness of AI-generated vulnerability repairs.
We answered the following research question:

(RQ3) Are AI-generated vulnerability repairs perceived as useful by software developers? As we have
comprehensively evaluated the performance in RQ1 and RQ2, it is essential to delve into the practical utility of
AI-generated repairs for software practitioners, a vital aspect yet to be explored. To bridge this gap in knowledge,
we diligently tackle RQ3 by conducting a user study tailored to assess the perceptions of security-aware software
developers regarding AI-generated vulnerability repairs. This investigation seeks to unveil the practicality and
real-world implications of our approach.

Following [Kitchenham and Pleeger 2008], we conduct our study according to the following steps: (1) design
and develop a survey, (2) recruit and select participants, and (3) verify data and analyze data. We explain the
details of each step below.

Fig. 9. The let part shows the example vulnerable C function presented in Part II-A in our user study while the right part

shows the example of AI-generated repair presented in Part II-B in our user study.

6.1 Survey Design

Step 1 ś Design and development of the survey: We designed our survey as a cross-sectional study where
participants provided their responses at one ixed point in time. The survey consists of 8 closed-ended questions
and 3 open-ended questions. For closed-ended questions, we use multiple-choice questions and a Likert scale
from 1 to 5. Our survey consists of two parts: preliminary questions and participants’ perceptions of AI-generated
software vulnerability repairs.

Part I: Demographics. The survey commences with a query, ł(D1) What is your role in your software devel-
opment team?ž, to ensure that our survey captures responses from the intended target participants. Subsequently,
the survey features a demographics question, ł(D2) What is the level of your professional experience?ž, aimed at
ensuring a diverse distribution of responses across software practitioners with varying degrees of professional
experience.

Part II-A: Manual Vulnerability Repair. To simulate a realistic vulnerability analysis scenario, we presented
an example vulnerable C function to the participants as depicted in the left part of Figure 9. We then asked the
participants to examine whether the function is vulnerable and propose a ix if required. Notably, we prepared
ten diferent examples of vulnerable C functions which were spread equally to groups of participants to ensure
that our survey is not biased toward a speciic vulnerable function.

Precisely, four inquiries were presented to the participants, commencing with ł(Q1) Do you think the C function
presented in Figure 1 is a vulnerable function or not?ž; followed by ł(Q2) Which line of code do you think is

ACM Trans. Softw. Eng. Methodol.



20 • Fu et al.

vulnerable?ž; then ł(Q3) Please suggest a ix to patch the vulnerable line.ž; and concluded with ł(Q4) How long
did it take for you to identify whether the function is vulnerable and propose a ix to the vulnerable function (if
required)?ž.

Part II-B: Participants’ Perception of AI-generated Vulnerability Repairs. As illustrated by the experimen-
tal results presented in Section 4, our approach consistently attains the highest perfect repair accuracy, surpassing
other baseline vulnerability repair methods by a signiicant margin. Given this demonstrated superiority, we
selected our VQM approach as the representative AI-generated vulnerability repair method for this user study.
To assess the participants’ perception regarding AI-generated vulnerability repairs, we presented the repairs

generated by our VQM approach as shown in the right part of Figure 9.
Precisely, ive inquiries were presented to the participants, ł(Q5) Do you think the AI-generated vulnerability

repair by our approach is correct or not?ž; followed by ł(Q6) How do you perceive the usefulness of AI-generated
vulnerability repairs? ž; then ł(Q7) Please justify your answer to Q6.ž; then ł(Q8) Would you consider adopting
AI-generated vulnerability repair techniques if they are integrated into your software development IDEs (e.g.,
VSCode) for free with no conditions?ž; and concluded with ł(Q9) What is your expectation of AI-generated
vulnerability repairs and how can we improve them?ž

We employed Google Forms as the platform for our online survey administration. Each participant was greeted
with a comprehensive introductory statement upon accessing the landing page. This statement elucidated the
study’s objectives, rationale for participant selection, potential advantages and risks, and the commitment to
safeguarding conidentiality. The survey was designed to be succinct, with an estimated completion time of
around 15 minutes, and ensured complete anonymity for all respondents. Importantly, our survey underwent a
rigorous evaluation process and received ethical approval from the Monash University Human Research Ethics
Committee (MUHREC ID: 40251).
Step 2: Recruit and select participants: We recruited developers who have software engineering and/or
software security expertise through LinkedIn and Facebook platforms. We received hundreds of Expressions of
Interest in one week. We then randomly split our target audience into ten groups, where each group was given
one distinct example vulnerable function while all of the questions were identical across all groups (as described
in Part II-A). Finally, we obtained a total of 82 responses in one week.
Step 3: Verify data and analyze data: To ascertain the completeness of survey responses, particularly regarding
open-ended questions, we conducted a thorough manual review. We iltered out 11 invalid responses (e.g., should
any of the open-ended questions remain unanswered or if the responses are incomprehensible) out of a total of 82
responses. Thus, we included the remaining 71 responses for analysis. Closed-ended responses were quantitatively
analyzed and presented using Likert scales through stacked bar plots. Additionally, we performed an in-depth
manual analysis of open-ended question responses to gain a better understanding of participants’ insights.

6.2 Survey Results

Part I: Demographics. Figure 10 presents the overall respondent demographic. In terms of the profession of

the participants, 25% ( 1871 ) of them are security analysts, 9% ( 6
71 ) of them are security researchers, 38% ( 2771 ) of them

are full-stack software engineers, while the other 28% ( 2071 ) are software quality assurance engineers and software

project managers. In terms of the level of their professional experience, 27% ( 1971 ) of them have less than 5 years of

experience, 49% ( 3571 ) have 6-10 years of experience, 21% ( 1571 ) have 11-20 years of experience, while the other 3%

( 2
71 ) has more than 20 years of experience.
Part II-A: Manual Vulnerability Repair. Figure 11 summarizes the answers to (Q1)-(Q4) regarding manual

vulnerability repair from the participants. In particular, 85% ( 6071 ) of them can correctly identify that the given

function is vulnerable, 41% ( 2971 ) of them can correctly locate the vulnerable statement, while only 1% ( 1
71 ) of them

can suggest the correct repair. Our indings highlight the complexity of vulnerability repair in contrast
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Fig. 10. The demographics of our survey participants in terms of their profession and professional experience.

to the identiication and localization of vulnerabilities. A signiicant majority, accounting for over 87% of
the participants, encountered challenges when tasked with proposing vulnerability repairs. Additionally, among
those participants who did attempt to provide repair suggestions, most of them were incorrect.
In the context of identifying, locating, and suggesting repairs for vulnerabilities, 38% ( 2771 ) spent 1-5 minutes,

30% ( 2171 ) took 6-10 minutes, and 32% ( 2371 ) required over 10 minutes to complete these tasks. This highlights the
time-consuming nature of vulnerability repair, with 62% of participants requiring over 10 minutes to

address a single vulnerable function containing 5-15 statements.

Part II-B: Participants’ Perception of AI-generated Vulnerability Repairs. Figure 12 summarizes the an-

swers to (Q5)-(Q9) regarding participants’ perception of AI-generated vulnerability repairs provided by our
approach. As presented in (Q5) results, the majority of participants demonstrated the ability to accu-

rately assess the correctness of AI-generated vulnerability repairs, with 85% ( 6071 ) providing correct

evaluations. However, 11% ( 8
71 ) of participants failed to correctly identify the accuracy of the repairs, while 4%

( 3
71 ) expressed uncertainty regarding the correctness of the AI-generated repairs.
Participants have actively engaged in the manual vulnerability repair process encompassing questions (Q1) to

(Q4). In (Q5), we simulate the vulnerability repair worklow involving AI tools, wherein users are required to
evaluate the correctness of AI-generated repairs before implementing them. The outcomes of (Q5) provide further
evidence of the participants’ proiciency in assessing AI-generated repairs. Hence, we proceed to evaluate their
perspective on the usefulness of AI-generated vulnerability repairs, drawing from their professional expertise in
vulnerability repair.
(Q6) How do you perceive the usefulness of AI-generated vulnerability repairs?

Findings. 86% of the participants perceived that the vulnerability repairs generated by our approach

are useful due to various reasons stated in (Q7):

• Eiciency & Productivity ś R8 (a security analyst with 6-10 years of experience): The AI systems can

quickly and eiciently scan large code bases for vulnerabilities and can also identify vulnerabilities that human

developers may miss; R56 (a security analyst with 6-10 years of experience): AI-generated vulnerability

repairs can enhance the eiciency and efectiveness of security teams by automating the identiication and

resolution of vulnerabilities, allowing them to focus on more complex security tasks and reducing the time

required to patch potential weaknesses; R22 (a full-stack software engineer with 6-10 years of experience): Its
automation and data analysis saves time and efort, boosting productivity. It also speeds up scientiic discovery
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Fig. 11. (Survey Results) A summary of the survey questions (i.e., Part II-A: Q1-Q4) and the results obtained from 71

participants.

and development in various ields; and R12 (a full-stack software engineer with 6-10 years of experience):
Throughout my seven years of experience, AI-generated vulnerability repairs have been very useful as they

help a lot. It helps to reduce the backlog of vulnerabilities that need to be ixed, and it can also help to ensure

that vulnerabilities are ixed quickly.
• Timeliness & Scalability ś R29 (a full-stack software engineer with less than 5 years of experience): AI
can rapidly identify and respond to vulnerabilities, which is critical in a constantly evolving threat landscape

and R41 (a security researcher with less than 5 years of experience): AI can handle large and complex systems,

making it an efective tool for identifying and addressing vulnerabilities at scale, which may be challenging for

human teams.
• Applicability ś R18 (a security analyst with 6-10 years of experience): The repaired function is a good one,

and it shows and indicates some compatibility with the vulnerable functions. In this way, adopting AI-generated

vulnerability repair plays an important role in ensuring proper functioning for greater results outcomes and
R20 (a full-stack software engineer with 11-15 years of experience): Useful in the sense that it allows for

more successful and quick corrections. Secondly, it provides a fast learning system for developers.
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(Q6) How do you perceive the usefulness of AI-generated vulnerability repairs?

(Q8) Would you consider adopting AI-generated vulnerability repair techniques if they are integrated into your 
software development IDEs (e.g., VSCode) for free with no conditions?

Response       Strongly not useful       Not useful       Neutral       Useful       Strongly useful

100 50 100
86%10%

50 0

4% 37% 49%

100 50 100
80%13%

50 0

31%

(Q9) What is your expectation of AI-generated vulnerability repairs and how can we improve them?

(Q7) Please justify your answer to Q6.

7%3%

7% 49%7%6%

Response       Strongly do not consider      Do not consider       Neutral       Consider      Strongly consider

Response       Not Correct      Not Sure      Correct

(Q5) Do you think the AI-generated vulnerability repair by our approach is correct or not?

100 50 100
85%11%

50 0

4% 85%11%

Fig. 12. (Survey Results) A summary of the survey questions (i.e., Part II-B: Q5-Q9) and the results obtained from 71

participants.

On the other hand, we observed that over 12% ( 9
71 ) of participants expressed apprehensions about human

involvement or potential ethical considerations, despite recognizing the usefulness of AI-generated repairs:

• R32 (a security analyst with 6-10 years of experience): In summary, AI-generated vulnerability repairs can be

a valuable aid in the security process, but they should be used alongside human expertise and thorough testing

to ensure the efectiveness and security of the repairs;
• R33 (a security analyst with 6-10 years of experience): However, it’s important to exercise caution with

AI-generated repairs. While AI algorithms can suggest potential ixes, they may not always produce the most

efective or secure solutions. Human expertise is still necessary to validate and test the proposed repairs, ensuring

that they don’t introduce new vulnerabilities or have unintended consequences;
• R40 (a security analyst with 6-10 years of experience): AI-generated vulnerability repairs can be a valuable

tool in cybersecurity, ofering speed and scalability. However, they should be part of a broader security strategy

that includes human expertise, ongoing monitoring, and ethical considerations;
• R43 (a full-stack software engineer with 6-10 years of experience): AI-generated vulnerability repairs have

the potential to be highly useful in enhancing cybersecurity, especially in terms of speed. However, Human

security professionals should provide oversight, review AI-generated repairs, and make critical decisions.

(Q8) Would you consider adopting AI-generated vulnerability repair techniques if they are integrated

into your software development IDEs (e.g., VSCode) for free with no conditions?
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Findings. 80% of the participants expressed a willingness to embrace AI-generated vulnerability repair

techniques if they are readily available and free of charge. Furthermore, the participants’ expectations
regarding AI-generated vulnerability repairs, as indicated in their responses to (Q9), can be summarized as
follows:

• Accuracy ś R4 (a security analyst with 6-10 years of experience): My expectation of AI-generated vulnera-

bility repairs is that they will become more advanced and efective in detecting and patching vulnerabilities in

software. To improve them, we can focus on enhancing the accuracy and speed of vulnerability detection algo-

rithms, ensuring compatibility with diferent software development environments, and continuously updating

the AI models with the latest threat intelligence and R5 (a security analyst with 6-10 years of experience):
Continuous learning and adaptation: AI models should be regularly updated and ine-tuned based on feedback

and new security insights to enhance their accuracy and efectiveness.
• Data Integrity ś R69 (a security analyst with 6-10 years of experience): To improve the quality of AI-

generated repairs, I think it will be important to have robust datasets that cover a wide range of vulnerabilities

and potential solutions.
• Availability ś R28 (a security analyst with 6-10 years of experience): It needs to be integrated into more

reachable software.
• Explainability ś R33 (a security analyst with 6-10 years of experience): Transparency and explainability:

Providing clear explanations of how AI-generated repairs are generated can help developers understand and

trust the suggested ixes; R42 (a quality assurance engineer with less than 5 years of experience): AI-
generated vulnerability repairs should provide clear explanations for their decisions, allowing human operators

to understand and trust the recommendations.; and R53 (a full-stack software engineer with more than 20
years of experience): In my opinion, AI-generated vulnerability repairs have a lot of potential, but there are

some challenges that need to be addressed before they can be widely used and trusted. One challenge is ensuring

the accuracy of the repairs. Another challenge is the need for explainability and transparency. Currently, many

AI systems are "black boxes," meaning that it’s diicult to understand how they arrive at their decisions. I think

improving explainability and transparency will be key to building trust in the technology.

Summary. Our survey study with 71 software practitioners provides valuable insights into the perception of AI-

generated vulnerability repairs. In particular, 86% ( 6171 ) of the participants found these repairs useful attributing their
value to increased eiciency, productivity, timeliness, scalability, and broad applicability. However, experienced
security analysts voiced concerns regarding the potential ethical implications and the need for human oversight.
Furthermore, participants expressed expectations for improvement, emphasizing the importance of enhancing
repair model accuracy, data integrity, method availability (e.g., integrating it into common software development
IDEs), and the transparency and explainability of AI models. These indings underscore the potential and
importance of AI-generated vulnerability repairs in the software security landscape while highlighting areas for
further development and reinement.

7 RELATED WORK

Machine learning (ML)-based techniques have been proposed to automate software engineering-related tasks such
as agile planning [Fu and Tantithamthavorn 2022a], code review [Hong et al. 2022b,a; Liu et al. 2022; Pornprasit
et al. 2023; Thongtanunam et al. 2022], code completion [Takerngsaksiri et al. 2022], defect prediction [Pornprasit
et al. 2021; Pornprasit and Tantithamthavorn 2021, 2022], and test case generation [Alagarsamy et al. 2023]. In
particular, ML-based vulnerability prediction approaches have also been proposed to help security analysts predict
vulnerabilities [Fu et al. 2023a; Fu and Tantithamthavorn 2022b; Nguyen et al. 2020, 2019, 2022b,a], explain their
vulnerability types [Fu et al. 2023b], estimate their severity [Fu et al. 2023c], and recommend repair patches [Chen
et al. 2022; Fu et al. 2022].
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In this paper, we focus on the Automated Vulnerability Repair (AVR) task that uses machine learning
models to generate repair patches for vulnerable C/C++ functions. In particular, our AVR task shares similarities
with the widely recognized Automated Program Repair (APR) task, yet it stands apart through two distinct
aspects. Firstly, the AVR task is notably more domain-speciic, directed towards addressing vulnerabilities rather
than general defects. Secondly, instead of generating complete repaired functions as output, the AVR task requires
models to generate repair patches that exclusively address the vulnerable code regions within vulnerable functions.
This design curtails output length and alleviates the model’s burden of generating extensive sequences, thereby
optimizing the repair process. It is worth noting that the general program repair shares a similar nature to
vulnerability repair where defective functions only consist of a few defective code statements that need to be
repaired. Thus, our AVR coniguration and the methodology of VQM have the potential for adaptation to tackle
the APR task that focuses on general bug ixing. It is important to acknowledge that vulnerability repair resides
within the larger domain of program repair. Nevertheless, in this paper, our focus remains dedicated to the
specialized domain of vulnerability repair.

RNN-based models such as SequenceR [Chen et al. 2019] have been proposed to encode the vulnerable programs
and decode corresponding repairs sequentially. SequenceR used Bi-LSTMs as encoders with unidirectional LSTMs
to generate repairs. Recently, attention-based Transformer models have been leveraged in the AVR domain, which
was shown to be more accurate than RNNs. For instance, VRepair [Chen et al. 2022] relied on an encoder-decoder
Transformer with transfer learning using the bug-ix data to boost the performance of the vulnerability repair on
C/C++ programs. SeqTrans [Chi et al. 2022] constructed code sequences by considering data low dependencies of
programs and leveraged an identical architecture as VRepair. In addition, Berabi et al. [2021] proposed to use a T5
model pre-trained on natural language corpus (i.e., T5-large [Rafel et al. 2020]) to ix JavaScript programs and Fu
et al. [2022] utilized a T5 model pre-trained on source code (i.e., CodeT5 [Wang et al. 2021a]) to repair C/C++
programs. Mashhadi and Hemmati [2021] applied the CodeBERT [Feng et al. 2020] model to repair Java bugs.
Those large pre-trained language models have demonstrated strong improvement over RNNs and non-pretrained
transformers because the pre-training steps help the models gain better initial weights for the vulnerability repair
downstream task than training from scratch. On the other hand, DLFix [Li et al. 2020] and CURE [Jiang et al. 2021]
were proposed to generate vulnerability repairs that satisfy test cases. Thus, complete repaired functions are
required to train and evaluate models and the problem statement is diferent from ours described in Section 2.2.
Diferent from the sequence-based methods mentioned above, Dinella et al. [2020] proposed to learn the graph
transformation based on the Abstract Syntax Tree (AST) of source code, which used GNNs to represent the
program and LSTMs to generate repairs for JavaScript programs.

Previous approaches mainly focus on leveraging seq2seq models for the AVR task. In particular, transformer-
based methods have achieved promising performance. As illustrated in Section 2.2, a vulnerable function usually
consists of only a few vulnerable code areas that cause the vulnerability. Nevertheless, existing transformer-based
approaches lack a mechanism to capture those vulnerable code areas during the repair generation. Thus, we
propose a mechanism to help decoders focus more on vulnerable code areas during the repair. Speciically,
we extend the VIT-based approaches for object detection (e.g., DeTR [Carion et al. 2020]) and build our own
vulnerability repair approach with vulnerability queries and masks to guide decoders to focus more on vulnerable
code areas during vulnerability repairs.

8 THREATS TO VALIDITY

Similar to other empirical studies related to deep learning models, there are various threats to the validity of our
results and conclusions.
Threats to internal validity relate to the stochastic gradient descent process to update network weights for

deep learning models during training. To mitigate this threat, we explicitly set the random seeds to ensure
reproducibility and report the hyperparameter settings in the replication package to support future replication
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studies. In addition, we repeated our main experiment ive times with diferent random seeds to ensure the
soundness of our experimental results and indings.
We acknowledge another internal threat to the validity of our experiments arising from the assumption that

our AI-based vulnerability repairs operate on conirmed vulnerable functions. While this assumption simpliies
our experimental setup, it may not fully represent the complexity of real-world scenarios where identifying
vulnerabilities is an integral part of the process. However, the vulnerability detection process is beyond the scope
of this paper. Thus, it is important to consider this limitation when interpreting the results of our experiments.
Finally, it is paramount for future research endeavors to develop an end-to-end pipeline that encompasses
vulnerability detection.

Threats to external validity relate to whether our VQM approach can be generalized to other vulnerabilities
and projects not included in our studied dataset, and programming languages other than C/C++. Our approach
is evaluated on the dataset provided by Chen et al. [2022] consisting of CVEFixes [Bhandari et al. 2021] and
Big-Vul [Fan et al. 2020] vulnerability corpus. While our studied dataset includes various vulnerabilities written
in C/C++ across diferent software projects, our VQM approach does not necessarily generalize to other data
and programming languages. Since our approach is not programming language-speciic, it could be trained on
other vulnerabilities written in programming languages other than C/C++ or from other projects without any
modiication of our approach. Thus, other datasets can be explored in future work.

9 CONCLUSION

In this paper, inspired by VIT-based object detection approaches in the computer vision domain, we have
introduced a new AVR method named VQM to enhance awareness and attention to vulnerable code areas in
a vulnerable function for producing better repairs. In our repair model, we cross-match vulnerability queries
(VQs) and their corresponding vulnerable code areas and their corresponding repairs through the cross-attention
mechanism. To strengthen such cross-matchings and guide decoders to pay more attention to vulnerable code
areas, we propose to learn a vulnerability mask (VMs) and incorporate it into the cross-attention. Additionally,
we apply our VMs in the self-attention of encoders to guide our model to focus more on vulnerable code areas
when learning the embeddings of a vulnerable function. Through an extensive evaluation of 5,417 real-world
vulnerabilities, our experiment conirms the advancement of our approach over all of the baseline AVR approaches.
Moreover, the additional analysis of our experimental results highlights the applicability of our VQM approach,
which can accurately repair common dangerous vulnerabilities. Last but not least, our survey study with 71
software practitioners highlights the signiicance and usefulness of AI-generated vulnerability repairs in the
realm of software security.
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