
Learning to Quantize Vulnerability Patterns and
Match to Locate Statement-Level Vulnerabilities

Michael Fu1 Trung Le1 Van Nguyen1,2

Chakkrit Tantithamthavorn1 Dinh Phung1,3
1Monash University, Australia
2CSIRO’s Data61, Australia
3VinAI Research, Vietnam

Abstract

Deep learning (DL) models have become increasingly popular in identifying soft-
ware vulnerabilities. Prior studies found that vulnerabilities across different vulner-
able programs may exhibit similar vulnerable scopes, implicitly forming discernible
vulnerability patterns that can be learned by DL models through supervised train-
ing. However, vulnerable scopes still manifest in various spatial locations and
formats within a program, posing challenges for models to accurately identify
vulnerable statements. Despite this challenge, state-of-the-art vulnerability detec-
tion approaches fail to exploit the vulnerability patterns that arise in vulnerable
programs. To take full advantage of vulnerability patterns and unleash the ability
of DL models, we propose a novel vulnerability-matching approach in this paper,
drawing inspiration from program analysis tools that locate vulnerabilities based
on pre-defined patterns. Specifically, a vulnerability codebook is learned, which
consists of quantized vectors representing various vulnerability patterns. During
inference, the codebook is iterated to match all learned patterns and predict the
presence of potential vulnerabilities within a given program. Our approach was
extensively evaluated on a real-world dataset comprising more than 188,000 C/C++
functions. The evaluation results show that our approach achieves an F1-score of
94% (6% higher than the previous best) and 82% (19% higher than the previous
best) for function and statement-level vulnerability identification, respectively.
These substantial enhancements highlight the effectiveness of our approach to
identifying vulnerabilities. The training code and pre-trained models are available
at https://github.com/optimatch/optimatch.

1 Introduction
The number of software vulnerabilities has been escalating rapidly in recent years. In particular,
National Vulnerability Database (NVD) [6] reported 26,448 software vulnerabilities in 2022, soaring
40% from 18,938 in 2019. The extensive use of open-source libraries, in particular, may contribute to
this rise in vulnerabilities. For instance, the Apache Struts vulnerabilities [31] indicate that this poses
a tangible threat to organizations. The root cause of these vulnerabilities is often insecure coding
practices, making the source code exploitable by attackers who can use them to infiltrate software
systems and cause considerable financial and social harm.

To mitigate security threats, security experts leverage static analysis tools that check the code against
a set of known patterns of insecure or vulnerable code, such as buffer overflow vulnerabilities and
other common security flaws. In contrast, deep learning-based vulnerability detection (VD) identifies
vulnerabilities at the file or function levels by implicitly learning vulnerability patterns during
training [33, 38, 28, 30]. DL-based vulnerability detection (VD) methods have demonstrated higher
accuracy compared to static analysis tools that only target specific vulnerability types [23, 17, 11].

Preprint. Under review.

ar
X

iv
:2

30
6.

06
10

9v
1

 [
cs

.C
R

]
 2

6
M

ay
 2

02
3

https://github.com/optimatch/optimatch

Additionally, recent advancements have introduced fine-grained VDs that offer statement-level
vulnerability predictions, aiming to minimize the manual analysis burden on security analysts.
Previous studies have employed graph structure of source code like the code property graph [21],
along with graph neural networks to detect vulnerabilities at the statement level [22, 19]. Additionally,
transformers have demonstrated their capability to learn semantic features of code using self-attention,
which is particularly beneficial for handling long sequences compared to RNN models [17, 13].

In this paper, we consider a vulnerable scope of a function as the collection of all vulnerable
statements in that function. As illustrated in Figure 1, each function consists of two vulnerable
statements that form similar vulnerable scopes. This suggests that even if two functions contain the
same CWE-787 out-of-bound write vulnerability (the top-1 dangerous CWE-ID in 2022 [10]), the
specific vulnerable statements can be written in different ways and located in different parts of the
code. Therefore, identifying vulnerabilities at the statement level is challenging for both machine
learning and deep learning models. Despite this difficulty, our analysis reveals that state-of-the-art VD
approaches have not successfully leveraged the information contained in vulnerable statements (that
could be grouped to form vulnerable scopes) to further improve the capability of machine learning
and deep learning vulnerability detection approaches at both the function and statement levels.

To address this issue, we propose a novel DL-based framework that can effectively utilize the
information presented in vulnerable scopes. To achieve this, we develop a method for quantizing
similar vulnerable scopes that share the same pattern into a vulnerability codebook consisting of
common codewords which represent common patterns. This codebook captures a diverse range of
vulnerabilities from the training data and facilitates the process of vulnerability matching inspired
by the pattern-matching concept utilized in program analysis tools [1–4]. Our approach is the first
to successfully exploit the benefits of vulnerability matching and codebook-based quantization to
enhance DL-based VD. This allows us to effectively identify vulnerabilities in source code data,
ultimately improving the overall capability of DL-based VD.

Our approach involves collecting and quantizing a set of vulnerable scopes from the training set before
using the optimal transport (OT) [16] to cluster this set into a vulnerability codebook consisting of a
set of vulnerability centroids (i.e., codewords). The vulnerable scopes (collected from the training set)
that share a similar pattern would stay closely in representations, hence we cluster them into a centroid
to summarize them. By clustering the set of vulnerable scopes into a smaller set of centroids, we
reduce the dimensionality of the feature space and make it easier for the model to perform matching
during inference. Additionally, the use of centroids ensures that similar vulnerable scopes are mapped
to the same location in the feature space. During training, we minimize the Wasserstein distance [16]
between the set of vulnerable scopes and the vulnerability codebook, which allows us to effectively
cluster vulnerable scopes and learn the representative centroids in the codebook. During inference,
our model matches the input program against all centroids in the learned vulnerability codebook. By
examining all the vulnerability patterns in the codebook, the matching process enables a thorough
search for potential vulnerabilities. This explicit matching method supports the identification of
specific vulnerability patterns and their associated statements, providing a comprehensive approach
to identifying vulnerabilities. We name this model OPTIMATCH, a function and statement-level
vulnerability identification approach via optimal transport quantization and vulnerability matching.

In summary, our work presents several contributions: (i) an innovative vulnerability-matching DL
framework utilizing optimal transport and vector quantization for function and statement-level
vulnerability detection (VD); (ii) a novel statement embedding approach using recurrent neural
networks (RNNs); and (iii) a thorough evaluation of our proposed method compared to other DL-
based vulnerability prediction techniques on a large benchmark dataset of real-world vulnerabilities.

2 Related Work
Researchers have proposed various deep learning-based vulnerability detections (VDs) such as
convolutional neural networks (CNNs) [33], recurrent neural networks (RNNs) [24, 29, 27], graph
neural networks (GNNs) [38, 7, 22, 19, 30, 13], and pre-trained transformers [15, 18, 17, 13].
RNN-based methods [33, 24, 23] have been shown more accurate than program analysis tools such
as Checkmarx [1] and RATS [4] to predict function-level vulnerabilities. However, RNNs face
difficulty in capturing long-term dependencies in long sequences as the model’s sequential nature
may result in the loss of earlier sequence information. Furthermore, function-level predictions lack
the required granularity to accurately identify the root causes of vulnerabilities. Thus, researchers
have proposed transformer-based methods that predict statement-level vulnerabilities and capture

2

void writeToBuffer(char *input, int offset) {

 char buffer[20];

 int i;

 for (i = 0; i < strlen(input); i++) {

 buffer[offset + i] = input[i]; // Vulnerable statement 1
 }

 buffer[offset + i] = '\0'; // Vulnerable statement 2

 printf("Buffer content: %s\n", buffer);

}

void copyToMemory(char *data, int start) {

 char memoryBlock[30];

 int i;

 memset(memoryBlock, 0, sizeof(memoryBlock));

 sprintf(memoryBlock, "Data block starting at index %d: ", start);

 for (i = 0; i < strlen(data); i++) {

 memoryBlock[start + i + strlen(memoryBlock)] = data[i]; // Vulnerable statement 1

 }

 memoryBlock[start + i + strlen(memoryBlock)] = '\0'; // Vulnerable statement 2

 printf("Memory content: %s\n", memoryBlock);

}

CWE-787 Example | Language: C CWE-787 Example | Language: C

Figure 1: In the left function, writeToBuffer, if the sum of offset and i exceeds or equals 20, it results
in writing data beyond the buffer array’s end. This overwrites memory beyond the array, posing a
potential program crash. Similarly, the copyToMemory function on the right uses the start index
to determine the starting point for copying data in memoryBlock. However, if the sum of start and
i surpasses or equals the size of memoryBlock, it leads to overwriting memory beyond the array,
causing an out-of-bounds write vulnerability. Despite sharing the same vulnerability type and similar
vulnerable scopes, the vulnerable statements in each function are different in their written form,
variable names, and positions.

long-term dependencies [13, 17] while ICVH [28] leverages bidirectional RNNs with information
theory to detect statement-level vulnerabilities. On the other hand, Zhou et al. [38] embed the abstract
syntax tree (AST), control flow graph (CFG), and data flow graph (DFG) for a code function and learn
the graph representations for function-level predictions. Nguyen et al. [30] proposed constructing
a code graph as a flat sequence for function-level predictions. Hin et al. [19] constructed program
dependency graphs (PDGs) for functions and predicted statement-level vulnerabilities.

In contrast to the above methods, we propose a deep learning-based vulnerability matching method
inspired by the principles of program analysis security tools. Specifically, we gather a group of
vulnerability patterns from the training set and develop a vulnerability codebook using optimal
transport [16] and vector quantization [35]. Our goal is to detect statements caused the vulnerabilities
by matching functions with the representative patterns we have learned in our codebook.

3 Approach

Deep learning (DL) models have been proving their abilities in capturing vulnerabilities more
accurately than program analysis tools using implicit vulnerability patterns learned from the training
data set [11, 17]. However, in real-world source code data sets, common vulnerable scopes would be
written in different styles (e.g., variable naming conventions) and appear at different spatial locations
in different vulnerable sections (i.e., functions or programs) [28]. Existing DL-based VD approaches
often fail to consider the common vulnerable scopes (which could be clustered into patterns) that
exist in vulnerable functions or programs during both training and inference, instead relying on
implicit learning through supervised learning. To address this limitation, we propose a novel DL
framework that integrates vulnerable scopes into centroids via a vulnerability codebook. The example
in Figure 1 demonstrates that the two vulnerable functions have the same vulnerable scope, consisting
of two vulnerable statements, but are presented in different variable names and spatial locations. To
overcome this issue, we group these vulnerable scopes with the same pattern and quantize them into
a codebook containing representative vulnerability centroids that can represent a set of similar scopes.
This codebook is then used to facilitate vulnerability matching during the inference phase, effectively
addressing the lack of consideration for vulnerable scopes in existing DL-based VD approaches.

In general, our approach consists of two phases. The warm-up phase illustrated in Figure 2 aims to
gradually adjust the model parameters, with the goal of improving the representation of embeddings
for input programs and vulnerable scopes. The main training phase is illustrated in Figure 3. The
yellow section on the left shows how we construct and learn our vulnerability codebook from
vulnerable scopes in our training data using optimal transport. The grey section on the right shows
how to utilize the codebook during training, which matches functions with the learned vulnerability
centroids in the codebook, allowing us to identify and highlight the statements that caused the
vulnerabilities. Below, we first formulate our problem by defining common notations followed by
how we map textual source code to vector space and warm up the embeddings. We then introduce the
motivation and method on why and how to learn a DL framework to achieve vulnerability matching.

3

3.1 Problem Statement

Let us consider a dataset of N functions in the form of source code. The data set includes both
vulnerable and benign functions, where the function-level and statement-level ground truths have
been labeled by security experts. We denote a function as a set of code statements, Xi = [x1, ...,xn],
where n is the max number of statements we consider in a function. Let a sample of data be{
(Xi, yi, zi) : Xi ∈ X , yi ∈ Y, zi ∈ Z, i ∈ {1, 2, ..., N}}, where X denotes a set of code functions,

Y = {0, 1} with 1 represents vulnerable function and 0 otherwise, and Z = {0, 1}n denotes a set
of binary vectors with 1 represents vulnerable code statement and 0 otherwise. Our objective is to
identify the vulnerability on both function and statement levels. We formulate the identification of
vulnerable functions as a binary classification problem and the identification of vulnerable statements
as a multi-label classification problem. Given a function Xi, we first input to a statement embedding
layer (SEMB) to obtain statement embeddings, namely Si and Pi, as specified in Equation 2 (refer
to Section 3.2 for the embedding details). Si ∈ Rn×d is the d-dimensional statement embedding
vectors for Xi. Prior studies have found that in a vulnerable function, there are code statements
associated with the vulnerabilities (i.e., vulnerable scopes) [28]. Let us denote Xvul

i as a set of all
vulnerable statements in a vulnerable function. To explicitly capture vulnerable scopes, we extract
Xvul

i from the vulnerable function and encode those statements using d-dimensional statement
embeddings as Pi ∈ Rq×d. q is the maximum number of vulnerable statements we consider in
a vulnerable function and we set q = 12 by applying truncation and padding because 95% of
vulnerable functions in our data have less than 12 vulnerable statements. Note that for each benign
function without any vulnerable statements, we leverage a special learnable embedding denoted as
Pbenign ∈ Rq×d to represent Pi. In addition, we apply an RNN layer (RNNvul) to summarize Pi

into a flat vector denoted as vi ∈ Rd, which can facilitate the learning of our vulnerability codebook
introduced in Section 3.4.2. Let us denote a stack of transformer encoders as F , we concatenate Si,
vi, and feed them into transformer encoders as F(Si,vi). We then make function and statement-level
predictions based on the output of F . The mapping from Xi to yi and zi is learned by minimizing
the cross-entropy loss function, denoted by L(·), as follows:

min
1

N

N∑
i=1

[
Lfunction

(
F(Si,vi), yi|Xi

)
+Lstatement

(
F(Si,vi), zi|Xi

)]
(1)

Benign Statement

Vulnerable Statement

Pad tokens

Token Embeddings

s1

…

s2

sn

Statement
Embeddings

Si

vi
⊕

12-Layer Transformer Encoders

H12[1 : n]

̂z

̂y

p1

...

pq

Input Vulnerable Function (Tokenized)

t1 t2 t3 … tr

Benign Statement

Vulnerable Statement

Vulnerable Statement

= H0

Vulnerability
Summarization

Pi

Xi

Phase 1

Vulnerable Statement

Vulnerable Statement
Vulnerable Statement

Token
Embeddings

Input Vulnerable Statements (Tokenized) Statement
Embedding

RNNstatement

RNNstatement

RNNvul

RNNfunction

Figure 2: The overview of the warm-up phase in our approach. We tokenize each statement in a
vulnerable function (i.e., Xi) followed by an embedding layer to map each token into a vector. We
use RNNstatement to summarize the token embeddings and get the statement embedding (Si, Pi).
For benign functions, Pi is replaced by a special learnable embedding, Pbenign. Additionally, we
use RNNvul to summarize vulnerable statement embeddings Pi to a vector vi that represents the
vulnerable scope. We concatenate Si and vi as the input to transformer encoders to consider vulnera-
ble scopes that arise in the function and align with our vulnerability matching process introduced
in Section 3.5. We select the statement embeddings output from the last encoder, i.e., H12[1 : n].
Each statement embedding vector is mapped to a probability as statement-level predictions, the
function-level prediction is obtained by summarising H12[1 : n] to a vector using an RNNfunction

and mapping it to a probability.

3.2 Statement Embedding Using RNN

Figure 2 depicts the forward passes involved in our warm-up step to adjust the embeddings for
statements and vulnerable scopes. We now introduce our motivations and method to embed statements

4

and vulnerable scopes. Large language models (LLMs) pre-trained for source code have been shown
effective to predict vulnerabilities [15, 18, 19, 17]. However, those LLMs leverage token embeddings
that only preserve 512 tokens (tokenized by the byte pair encoding (BPE) algorithm [34]) for each
input function while extra tokens need to be truncated. This could lead to information loss for long
functions with more than 512 tokens. To address this limitation, we propose the statement embedding
layer SEMB to encode a function (e.g., Xi) as a set of statement embeddings:

Si = SEMB(Xi), Pi = SEMB(Xvul
i), where Xi, X

vul
i ∈ X (2)

Given Xi = [x1, ...,xn], we use BPE to tokenize xj to a list of tokens, [t1, ..., tr], where r is the
number of tokens we consider in a code statement. We then obtain a token embedding for each tj
using an embedding layerE ∈ Rv×d where v is the vocab size of the tokenizer. This results in a token
embedding matrix S̄i ∈ Rn×r×d for all statements in Xi. Similarly, we obtain token embeddings of
vulnerable statements Xvul

i as P̄i ∈ Rq×r×d to represent a vulnerable scope. We apply truncation
and padding to make q a constant for each vulnerable function.

With n = 155 and r = 20 (see Section 4.2), we can process 3,100 tokens per function, which is
six times more than the 512 tokens. Our statement embedding method provides a more complete
representation of code functions compared to the token embedding method. Specifically, our method
can fully represent 99% of the functions in our dataset that have less than 2,700 tokens, while the
token embedding method can only fully represent around 85% of the functions that have less than 500
tokens. Table 1 shows that our statement embedding method results in a 33% and 32% enhancement
in the performance of CodeBERT and CodeGPT models for statement-level predictions.

Previous studies such as Sentence-BERT [32] leverage max or mean pooling to aggregate token
embeddings. The max pooling would lead to information loss since it considers the maximum token
embedding for each statement, discarding all other token embeddings in the sequence. While the
mean pooling considers all token embeddings, it treats all the token embeddings equally regardless of
their importance or relevance to the statement they belong where the prominent token features could
be disregarded. In contrast, we propose to learn an RNN [9] with r (max number of tokens in each
statement) time steps to aggregate the token embeddings and obtain statement embeddings as below:

Si[j] = RNNstatement(S̄[j, :, :]),∀j ∈ {1, . . . , n} (3)

Pi[j] = RNNstatement(P̄ [j, :, :]),∀j ∈ {1, . . . , q} (4)

To acquire the jth statement embedding for Si and Pi, we summarize the token embeddings of length
r using RNNstatement. Following the convention of Python lists, we represent the jth statement
embeddings as Si[j]. While mean or max pooling operations are not learnable, the RNNstatement

layer allows us to learn to pool token embeddings in each statement into a statement embedding vector
while preserving prominent token features and mitigating the potential information loss. Finally, we
use RNNvul to summarize our vulnerable scope Pi into a flat vector vi (see Section 3.4.1 for more
details).

3.3 Training of Warm-Up Phase

To consider the statement embeddings and the vulnerable scope of Xi, we concatenate Si and vi

to obtain the input to transformer encoders as H0 = Si ⊕ vi. We select the statement embeddings
output from the trail encoder, i.e., H12[1 : n] where the vi embedding is omitted. We provide details
of the transformer self-attention operation in Appendix A.1. We use RNNfunction with n time
steps to summarize statement embeddings into a vector and map it to the function-level prediction
ŷi ∈ [0, 1] as follows:

ŷi = σ
(
drop

(
tanh(drop(RNN(H12

1:n))W
G)

)
WU

)
(5)

where WG ∈ Rd×d and WU ∈ Rd×1 are model parameters, drop is a dropout layer, and σ is a
sigmoid function. We map statement embeddings to a statement-level prediction ẑi = [ẑi

1, . . . , ẑi
n] ∈

[0, 1]n via:

ẑi = σ
(
drop

(
tanh(drop(H12

1:n)W
I)
)
W J

)
(6)

where W I ∈ Rd×d and W J ∈ Rd×1 are model parameters, and σ is a sigmoid function.

5

Cluster Selection

…

Vulnerability Collection

CV

Vulnerability Codebook
Vul Function 1

Vul Function a

R
ecurrent N

eural N
etw

orks

c1

va
ck

v2

v1
c1…

Centroid Representation Learning
Using Optimal Transport

v1

…

va

v2

ck

…

Si

vi

c*vi

⊕ = H0

Gradient
Copy

12-Layer Transformer Encoders

̂y, ̂z

v
c1 c2 c3 … ck

CrossAt t (vi, C)

Learning a Vulnerability Codebook

Wd(PV, PC)

c*vi
= argmaxCCrossAtt(vi, C)

At tScore

Xi

Phase 2

minC

Figure 3: The overview of the main training phase in our approach. We introduce how to learn our
vulnerability codebook on the left. We first collect a set of vulnerable statement embeddings from
our training data. We then use RNNvul to pool a set of statement embeddings from each vulnerable
function, forming a vulnerable scope represented by a vector vi. The set of these scopes forms
our vulnerability collection V = {v1, . . . ,va}. Next, we learn vulnerability centroids cj using the
Wasserstein distance metric to create a more compact vulnerability codebook C = {c1, . . . , ck},
where each centroid represents a group of vulnerable scopes. During training, we minimize the
Wasserstein distance between each vi and its corresponding vulnerability centroid c∗vi

. We illustrate
this main training phase on the right side which is the same as our warm-up phase except that we
concatenate Si and c∗vi

to obtainH0 as detailed in Section 3.4.3. To overcome the non-differentiability
of the argmax operation in the networks, we copy the gradients from v to c∗vi

to learn the statement
embedding and pattern summarization RNNs for vulnerability patterns.

3.4 Vulnerability Codebook and Subsequent Main Training Phase

Our model parameters are now warmed up to embed statements and vulnerable scopes. Our objective
is to achieve vulnerability matching using trainable vulnerability centroids. In the following, we
outline our motivations and approach for creating, training, and employing our vulnerability codebook
during the primary training phase.

3.4.1 Collect vulnerable scopes from Vulnerable Functions

To exploit and capture common vulnerable scopes in source code, we aim to learn a vulnerability
codebook containing representative centroids that group vulnerable scopes sharing the same pattern.
Unlike those patterns in program analysis tools, our vulnerability centroids are represented in vectors
to conform with DL models, whose representation is adjustable during training, enabling the model to
recognize typical vulnerability patterns that may occur at various spatial locations within a vulnerable
function.

Given training data consisting of a vulnerability functions, we extract vulnerable statements to form
vulnerable scopes for each function as presented in the very first left part of Figure 3. To simplify
the process of building our vulnerability codebook introduced in Section 3.4.2, we take two steps.
First, we use RNNvul to summarize our vulnerable scopes into flat vectors. Then, we reduce the
dimensionality of these vectors. This enables us to easily group them into vulnerability centroids and
construct our vulnerability codebook. We have denoted our vulnerable scope as vi in Section 3.1. vi

is obtained by applying RNNstatement and RNNvul to get the vulnerable statement embeddings
and condense them into a flat vector. To reduce the dimensionality of vi, we linearly project the d-
dimensional vector to the h-dimensional and normalize it as vi = LN(vi ·WF) where WF ∈ Rd×h

is model parameters and LN is layer normalization. We then accumulate each vi extracted from
vulnerable functions to form a vulnerability collection denoted as V ∈ Ra×h where a is the total
number of vulnerable functions in our training data.

3.4.2 Learn to Transport Vulnerable Scopes to Vulnerability Centroids in Codebook

However, V may consist of repeated or similar vulnerable scopes. Additionally, the huge collection
size of V will also require many computing resources during inference since we need to match
each function with a number of scopes (in our training data, a = 6, 361). To address such issues,
we propose to learn a vulnerability codebook denoted as C = [c1, ..., ck] where ci ∈ Rh is a
vulnerability centroid. Intuitively, this codebook integrates similar vulnerable scopes and forms
common vulnerability patterns. In particular, we reduce the 6,361 number of v vectors in our
vulnerability collection to 150 vulnerability centroids in our codebook.

6

To ensure that vulnerability centroids can represent a group of similar vulnerable scopes, we leverage
the optimal transport theory to transfer vulnerability patterns to their corresponding vulnerability
centroid. We minimize the Wasserstein distance [36] using the Sinkhorn approximation [12] between
our vulnerability collection and codebook. Consequently, the vulnerable scopes and their respective
vulnerability centroids will converge towards each other. Ultimately, our codebook will comprise
vulnerability centroids acting as representative patterns that symbolize different sets of vulnerability
scopes. This allows us to aggregate similar vulnerability patterns based on Euclidean distance. We
summarize the process as follows:

minC Wd(PV , PC), where PV =
1

a

a∑
i=1

δvi and PC =
1

a

a∑
j=1

δcj (7)

where Wd is the Wasserstein distance [36] and δ represents the Dirac delta distribution. According to
the clustering view of optimal transport [26, 20], when minimizing minC Wd(PV , PC), the set of
codebooks C will become the centroids of the clusters formed by V . This clustering approach ensures
that similar vulnerable scopes potentially sharing the same vulnerability pattern are grouped together,
leading to a quantized vulnerability codebook that is more concise and effective. We randomly
initialize the embedding space of our vulnerability codebook as C = [c1, ..., ck] with k number of
clusters.

3.4.3 Main Training Phase

The right part of Figure 3 highlighted in grey summarizes our main training phase. We load the
model parameters warmed up in our previous phase. By employing the same statement embedding
methodology introduced in Section 3.2, we obtain the statement embeddings Si and a summarized
vulnerable scope vector vi for the input function Xi.

Instead of concatenating Si with vi, we employ a cluster selection process to map the vulnerable
scope vi to its most similar vulnerability centroid (denoted as c∗vi

∈ R1×h) selected from our
codebook. By doing so, the model inherently develops an understanding of the vulnerability centroids
stored in our vulnerability codebook, which are closely linked to vulnerable functions. We utilize the
cross-attention (see Appendix A.2) between the vulnerable scope and the codebook and determine
the vulnerability centroid for vi as c∗vi

= argmaxCCrossAtt(vi, C). The argmax function selects
the index of the vulnerability centroid with the highest attention score, which corresponds to the
closest vector to vi in terms of similarity. We linearly project c∗vi

from the factorized h-dimension
to the d-dimension to align with the dimension of our statement embeddings. Different from our
warm-up phase where we concatenate Si with vi, we now concatenate Si with c∗vi

(the most similar
centroid to the vulnerable scope vi). Thus, the input to the encoders becomes H0 = Si ⊕ c∗vi

. The
subsequent forward passes are the same as our warm-up phase described in Section 3.3.

Note that no real gradient is defined for vi once we map it to a c∗vi
via an argmax operation

that causes the networks non-continuous and non-differentiable. To let the networks which embed
and summarize vulnerable statements be trainable via backpropagation, we follow the idea in VQ-
VAE [35] which was shown effective for vector quantization. We approximate the gradient similar
to the straight-through estimator [5] and copy gradients from summarized vulnerable scope vi to
selected vulnerability centroid c∗vi

. Below, we introduce how to leverage our learned codebook for
vulnerability matching during inference.

3.5 Vulnerability Identification Through Explicit Vulnerability Patterns Matching

Our approach utilizes vulnerable patterns that are often ignored by existing methods. By matching
vulnerability centroids during inference, our approach enables us to fully harness the capabilities
of DL models for vulnerability identification. We first obtain d-dimensional statement embeddings
Si from an input function Xi as described in Section 3.2. For each vulnerability centroid cj in our
codebook, we linearly project cj from h-dimensional to d-dimensional space and concatenate it with
Si as H0

j = Si ⊕ cj. We then pass H0
j through transformer encoders (F) to obtain function-level and

statement-level vulnerability predictions, which is summarized as P func
i , P stmt

i = F(Si, cj) ∀j ∈
{1, . . . , k} where P func

ij ∈ [0, 1] and P stmt
ij ∈ [0, 1]n. Thus, we get k (number of centroids in our

codebook) function and statement-level predictions. We use max pooling to pick the most prominent
vulnerability-matching results as P̄i

func
= maxkP

func
i and predict if X is a vulnerable function

7

using a probability threshold of 0.5. If X is predicted as a benign function, we directly output a
zero vector as the statement-level prediction. Otherwise, we employ mean pooling to consider the
prediction from each vulnerability centroid in our codebook as P̄i

stmt
= 1

k

∑k
j=1 P

stmt
ij and predict

if each statement is vulnerable using a probability threshold of 0.5.

4 Experiments
4.1 Experimental Dataset and Baseline Methods

To identify vulnerabilities on function and statement levels, we select the Big-Vul data set created
by Fan et al. [14] as it is one of the largest vulnerability data sets with statement-level vulnerability
labels and has been used to assess statement-level vulnerability detection methods [19, 17]. The data
set was collected from 348 Github projects and consists of 188k C/C++ functions with 3,754 code
vulnerabilities spanning 91 vulnerability types. The data distribution in our experiments resembles
real-world scenarios, where the proportion of vulnerable to benign functions is 1:20. Our training
data set comprises 6,361 vulnerability scopes before we group them into patterns in our codebook.

We compare our approach with (i) LLMs for code (i.e., CodeBERT [15] and GraphCodeBERT [18]),
(ii) Transformer-based VD (i.e., LineVul [17] and VELVET [13]), (iii) GNN-based VD (i.e.,
LineVD [19], ReGVD [30], and Devign [38]), (iv) RNN-based ICVH [28], and (v) CNN-based
TextCNN [8]. More details of the baselines are provided in Appendix A.3.

4.2 Parameter Settings and Model Training

We split the data into 80% for training, 10% for validation, and 10% for testing. For both our
approach and baselines, we consider n = 155 statements in each function and r = 20 tokens in
each statement as the descriptive statistics of the whole data set suggest that 95% of source code
functions have less than 155 statements and 95% of statements have less than 20 tokens. To initialize
our transformer encoders, we make use of the pre-trained model provided by Wang et al. [37]. This
model has undergone pre-training through various denoising objectives associated with programming
languages. Details of the hyperparameter settings for our method in both phases are provided in
Appendix A.4. In both training phases, we train our model through specific epochs and select the
model that demonstrates the highest F1 score for statement-level prediction in the validation set. The
experiments were conducted on a Linux machine with an AMD Ryzen 9 5950X processor, 64 GB of
RAM, and an NVIDIA RTX 3090 GPU. The potential limitations imposed by our experimental setup
are discussed in Appendix A.5.

4.3 Main Results
We conduct our experiments several times and report the average numbers. The experimental data set
and baseline methods are detailed in Section 4.1. We report accuracy (Acc), precision (Pre), recall
(Re), and F1-score (F1) for function-level and statement-level vulnerability prediction tasks for a
comprehensive evaluation of each approach. This enables us to assess the models’ performance on
both positive and negative classes, regardless of the class imbalance between vulnerable and benign
functions. Note that the statement-level metrics are computed on the statement level instead of the
function level to determine if each statement is correctly predicted. The experimental results are
shown in Table 1. Our approach yields an improvement in function-level F1-score of 6% to 65% and
an improvement in statement-level F1-score of 19% to 71%.These results highlight the effectiveness
of our approach in accurately predicting vulnerabilities, both at the function and statement levels,
outperforming all other state-of-the-art methods. Furthermore, our RNN statement embedding
method significantly enhances the performance of CodeBERT (30% → 63%) and CodeGPT (12%
→ 44%) in statement-level vulnerability prediction. This finding validates our intuition that the
statement embeddings learned by our method can capture contextual information and locate statements
associated with vulnerabilities more accurately than token embeddings.

4.4 Ablation Study

To assess the effectiveness of the proposed components in our OPTIMATCH approach, we conduct an
ablation study. Specifically, we compare our RNN statement embedding method with mean or max
pooling methods. Furthermore, we examine the impact of our vulnerability codebook and matching
by comparing our approach with a variant that employs the same model architecture and pre-trained
weights, but without using the vulnerability codebook and matching. Finally, we demonstrate the
impact of the number of vulnerability centroids (i.e., k) on the performance of our approach.

8

Table 1: (Main Results) We compare our OPTIMATCH approach against other baseline methods and
present results in percentage.

Function Level Statement LevelMethod Embedding Acc Pre Re F1 Acc Pre Re F1
OPTIMATCH(ours) Statement 99.45 97.66 89.83 93.58 99.65 86.8 77.96 82.14

CodeBERT + our embedding Statement 98.91 92.15 82.89 87.28 99.19 59.39 67.84 63.33
CodeBERT Token 98.75 93.9 77.27 84.78 96.89 19.29 63.54 29.6

CodeGPT + our embedding Statement 98.95 91.25 84.81 87.91 98.23 32.54 67.34 43.88
CodeGPT Token 95.69 56.18 19.02 28.42 98.48 14.4 9.7 11.6

GraphCodeBERT Token 95.51 50.11 27.03 35.12 96.94 10.56 26.34 15.08
LineVul Token 98.61 89.25 78.47 83.51 - - - -

VELVET Statement 98.88 93.37 80.86 86.67 98.5 38.19 73.5 50.26
LineVD Statement - - - - 95.19 27.1 53.3 36
ReGVD Token 97.12 77.92 50.24 61.09 - - - -
Devign Token 96.9 72.29 50.24 59.28 - - - -
ICVH Statement 96.56 77.44 33.25 46.53 97.77 21.31 43.17 28.53

TextCNN Statement 95.95 62.31 25.12 35.81 98.15 21.03 28.91 24.34

The experimental results are shown in Table 2. The utilization of mean or max pooling to summarize
token embeddings into statement embeddings results in a slight decrease of 1.75% and 0.45% in
function-level F1-score and 4.6% and 4.12% in statement-level F1-score, respectively, as compared
to using an RNN. The results confirm the effectiveness of our RNN statement embedding method,
indicating that it is more effective in summarizing token embeddings by retaining token features
at each time step. The performance significantly deteriorates by 33.58% and 45.2% for function
and statement-level predictions when the vulnerability codebook and matching components are
removed. This underscores the importance of these components in achieving high-performance levels.
The results suggest that the vulnerability codebook plays a crucial role in our approach, which is
responsible for retaining and leveraging the vulnerability patterns information present in vulnerable
functions. This information is then utilized to identify vulnerable statements effectively during the
vulnerability-matching inference. The lower section of Table 2 illustrates the impact of the number of
vulnerability centroids on our approach. The results demonstrate that our approach attains favorable
statement-level F1-scores for k ∈ [100, 150, 200], and we set k = 150 as it produces the optimal
statement-level F1-score. Notably, k represents a crucial factor, where a small value of k (e.g., 50)
may result in unsatisfactory performance due to the grouping of too many vulnerability patterns
together, resulting in an inadequate representation of each pattern. Conversely, a large value of k
(e.g., 400) leads to a substantial embedding space of our codebook, making it challenging to update
during the backward process.

Table 2: (Ablation Results) We compare our proposed method to other variants to investigate the
impact of the individual components. The metrics are reported as percentages.

Function Level Statement LevelMethod Acc Pre Re F1 Acc Pre Re F1
OPTIMATCH (ours) 99.45 97.66 89.83 93.58 99.65 86.8 77.96 82.14

w/o RNN embedding (mean pooling applied) 99.31 98.49 86 91.83 99.59 90.4 67.89 77.54
w/o RNN embedding (max pooling applied) 99.4 96.53 89.95 93.13 99.56 79.7 76.4 78.02

w/o vulnerability codebook & matching 94.81 45.91 86.6 60 98.19 28.77 51.57 36.94
OPTIMATCH wt 50 vulnerability centroids 85.9 23.95 98.21 38.51 95.5 16.92 86.13 28.28

OPTIMATCH wt 100 vulnerability centroids 99.38 98.13 87.92 92.74 99.64 88.14 74.98 81.03
OPTIMATCH wt 150 vulnerability centroids (ours) 99.45 97.66 89.83 93.58 99.65 86.8 77.96 82.14

OPTIMATCH wt 200 vulnerability centroids 99.45 96.69 90.91 93.71 99.63 83.44 80.02 81.69
OPTIMATCH wt 400 vulnerability centroids 98.28 99.05 62.32 76.51 99.54 81.91 70.47 75.76

5 Conclusion
This paper presents a novel vulnerability-matching method for function and statement-level vulnera-
bility detection (VD). Our approach capitalizes on the vulnerability patterns present in vulnerable
programs, which are typically overlooked in deep learning-based VD. To be specific, we collect
vulnerability patterns from the training data and learn a more compact vulnerability codebook from
the pattern collection using optimal transport (OT) and vector quantization. During inference, the
codebook is utilized to match all learned patterns and detect potential vulnerabilities within a given
program. Our comprehensive evaluation, conducted on over 188,000 real-world C/C++ functions,
demonstrates that our method surpasses other competitive baseline techniques, while our ablation
study confirms the soundness of our approach.

9

References
[1] Checkmarx. https://checkmarx.com/.

[2] Cppcheck. https://cppcheck.sourceforge.io/.

[3] Flawfinder. https://dwheeler.com/flawfinder/.

[4] Rats. https://code.google.com/archive/p/rough-auditing-tool-for-security/.

[5] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[6] Harold Booth, Doug Rike, and Gregory Witte. The national vulnerability database (nvd):
Overview, 2013-12-18 2013.

[7] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet. IEEE Transactions on Software Engineering, 2021.

[8] Yahui Chen. Convolutional neural network for sentence classification. Master’s thesis, Univer-
sity of Waterloo, 2015.

[9] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder–decoder approaches. In Proceedings of
SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages
103–111, 2014.

[10] CWE Community. 2022 cwe top 25 most dangerous software weaknesses. https://cwe.
mitre.org/top25/archive/2022/2022_cwe_top25.html, 2022.

[11] Roland Croft, Dominic Newlands, Ziyu Chen, and M Ali Babar. An empirical study of rule-
based and learning-based approaches for static application security testing. In Proceedings of the
15th ACM/IEEE international symposium on empirical software engineering and measurement
(ESEM), pages 1–12, 2021.

[12] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[13] Yangruibo Ding, Sahil Suneja, Yunhui Zheng, Jim Laredo, Alessandro Morari, Gail Kaiser, and
Baishakhi Ray. Velvet: a novel ensemble learning approach to automatically locate vulnerable
statements. In 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 959–970. IEEE, 2022.

[14] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnerability dataset with
code changes and cve summaries. In Proceedings of the 17th International Conference on
Mining Software Repositories (MSR), pages 508–512, 2020.

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 1536–1547, 2020.

[16] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and
Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2681–2690.
PMLR, 2019.

[17] Michael Fu and Chakkrit Tantithamthavorn. Linevul: a transformer-based line-level vulnerability
prediction. In Proceedings of the 19th International Conference on Mining Software Repositories
(MSR), pages 608–620, 2022.

[18] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. In International Conference on Learning Representations, 2021.

10

https://checkmarx.com/
https://cppcheck.sourceforge.io/
https://dwheeler.com/flawfinder/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

[19] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. Linevd: statement-level vulnerability
detection using graph neural networks. In Proceedings of the 19th International Conference on
Mining Software Repositories (MSR), pages 596–607, 2022.

[20] Nhat Ho, XuanLong Nguyen, Mikhail Yurochkin, Hung Hai Bui, Viet Huynh, and Dinh Phung.
Multilevel clustering via wasserstein means. In International conference on machine learning,
pages 1501–1509. PMLR, 2017.

[21] Joern. Code property graph. https://docs.joern.io/code-property-graph/, 2023.

[22] Yi Li, Shaohua Wang, and Tien N Nguyen. Vulnerability detection with fine-grained interpre-
tations. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 292–303, 2021.

[23] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. Sysevr: A
framework for using deep learning to detect software vulnerabilities. IEEE Transactions on
Dependable and Secure Computing, 19(4):2244–2258, 2021.

[24] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv preprint
arXiv:1801.01681, 2018.

[25] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning
benchmark dataset for code understanding and generation. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1).

[26] Tuan Nguyen, Trung Le, Nhan Dam, Quan Hung Tran, Truyen Nguyen, and Dinh Phung. Tidot:
A teacher imitation learning approach for domain adaptation with optimal transport. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, pages 2862–2868. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. Main Track.

[27] Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John Grundy, and Dinh Phung. Dual-
component deep domain adaptation: A new approach for cross project software vulnerability
detection. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2020.

[28] Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John Grundy, and Dinh Phung.
Information-theoretic source code vulnerability highlighting. In 2021 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[29] Van Nguyen, Trung Le, Tue Le, Khanh Nguyen, Olivier DeVel, Paul Montague, Lizhen Qu,
and Dinh Phung. Deep domain adaptation for vulnerable code function identification. In The
International Joint Conference on Neural Networks (IJCNN), 2019.

[30] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh Phung.
Regvd: Revisiting graph neural networks for vulnerability detection. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings,
pages 178–182, 2022.

[31] National Institute of Standards and Technology. Apache struts vulnerability (cve-2021-31805).
https://nvd.nist.gov/vuln/detail/CVE-2021-31805, 2022.

[32] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3982–3992, 2019.

[33] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul
Ellingwood, and Marc McConley. Automated vulnerability detection in source code using deep
representation learning. In 2018 17th IEEE international conference on machine learning and
applications (ICMLA), pages 757–762. IEEE, 2018.

11

https://docs.joern.io/code-property-graph/
https://nvd.nist.gov/vuln/detail/CVE-2021-31805

[34] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, 2016.

[35] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems (NeurIPS), 30, 2017.

[36] Cédric Villani. Optimal transport: Old and new. 2008.

[37] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In the Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
8696–8708, 2021.

[38] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective
vulnerability identification by learning comprehensive program semantics via graph neural
networks. Advances in neural information processing systems (NeurIPS), 32, 2019.

12

A Appendix

A.1 Self-Attention of Transformer Encoders

Given the input H0, we leverage 12 layers of transformer encoders to learn the representation of x as
follows:

At = LN(MultiAttn(Ht−1)) +Ht−1, t ∈ {1, ..., 12} (8)

Ht = LN(FFN(At) +At) (9)

where At the self-attention output, MultiAttn is a multi-head attention, FFN is feed-forward
neural networks and LN is layer normalization.

A.2 Cross Attention for Selecting Vulnerability Centroids

Q = vi ·WQ,K = C ·WK , V = C ·WV (10)

AttScore = Drop(ψ(Q ·KT)), AttScore ∈ R1×k (11)

c∗vi
= argmax(AttScore) (12)

where query states Q is obtained by linearly projected vi using model parameters WQ ∈ Rh×h,
key states K and value states V are obtained by linearly projected C using model parameters
WK ,WV ∈ Rh×h. ψ is a softmax function and Drop is a dropout layer. We use argmax operation
to obtain the codebook embedding index and map vi to the corresponding c∗vi

having the maximum
AttScore.

A.3 Details of Baseline Methods

We compare our OPTIMATCH approach with LLMs pre-trained on source code data, state-of-
the-art transformer-based, GNN-based, RNN-based, and CNN-based vulnerability detection (VD)
approaches. We reproduce each baseline based on the code provided by the original authors.

LLMs for code: We include CodeBERT [15], CodeGPT [25], and GraphCodeBERT [18]. These
models were pre-trained with token embeddings. We include an additional trial for CodeBERT and
CodeGPT using our RNN statement embedding method. Note that the statement embedding is not
compatible with GraphCodeBERT’s data flow construction.

Transformer-based VD: LineVul [17] is designed to perform function-level prediction by leverag-
ing a pre-trained transformer model. Although it can also provide statement-level predictions by
interpreting and ranking the attention scores of the transformer, this approach is not suitable for the
statement-level classification setting. To ensure a fair comparison, we only evaluate our approach
against LineVul on the function level. VELVET [13] is an ensemble method that leverages a vanilla
transformer with GNNs.

GNN-based VD: LineVD [19], ReGVD [30], and Devign [38] are GNN-based methods that learn
the graph property of source code. Note that ReGVD and Devign only predict function-level
vulnerabilities.

RNN-based and CNN-based VD: ICVH [28] leverages Bi-RNN with information theory to detect
statement-level vulnerabilities. ICVH was initially trained in the unsupervised setting for statement-
level vulnerability prediction, but we found that it was not effective in our context. Therefore, we
adopted the original ICVH architecture and added a cross-entropy loss to train ICVH in the supervised
setting to achieve a fair comparison. On the other hand, TextCNN [8] uses convolutional layers for
sentence classification tasks.

A.4 Hyper-Parameter Settings of Our OPTIMATCH Approach

Table 3 lists the hyper-parameter settings required to reproduce our approach. We have made our
replication package available at https://github.com/optimatch/optimatch, which includes
all the experimental scripts. We have included a comprehensive README file that contains all of the
details needed to reproduce the experimental results demonstrated in this paper.

13

https://github.com/optimatch/optimatch

Table 3: The hyper-parameter settings of our OPTIMATCH approach.
Phase Optimizer Scheduler LR Grad Clip Epochs Stmt Len (r) Max Num Stmt (n) Num Centroids (k) Batch

Warm-up AdamW Linear (4,650 warm-up steps) 1e-4 1.0 20 20 tokens 155 - 64
Main AdamW Linear (4,650 warm-up steps) 1e-4 1.0 20 20 tokens 155 150 64

A.5 Discussion

Inspired by program analysis tools for locating vulnerabilities based on predefined vulnerability
patterns, we proposed our innovative vulnerability-matching deep-learning framework not only
successfully utilizing optimal transport and vector quantization for function and statement-level
vulnerability detection but also effectively leverage the information presented in vulnerable statements
and patterns to enhance deep learning-based vulnerability detection. We found that the performance
of our approach can be affected by the chosen number of vulnerability centroids (k) used in the
codebook. While our approach has shown promising results in detecting vulnerabilities in source
code, the number of centroids is currently a hyperparameter that requires manual tuning. This could
be a limitation of our approach when scaling up to larger datasets or more complex codebases, as
it may not be feasible to manually optimize the number of centroids for each dataset. Thus, our
future work should focus on developing automated methods for selecting the optimal number of
centroids or incorporating more advanced techniques such as adaptive quantization to dynamically
adjust the codebook dictionary during training. Nevertheless, we conduct an ablation study to reason
the optimal solution in this paper. We assessed the effectiveness of our method using the extensive
Big-Vul dataset, which includes 188,000 C/C++ functions and 3,754 code vulnerabilities across 91
distinct CWE-IDs. This dataset is expected to be comprehensive and inclusive, containing a range
of code patterns and vulnerabilities that are reflective of real-world scenarios. Nevertheless, the
performance of our method and the comparison baselines may vary when tested on other datasets
with different characteristics. We acknowledge this limitation and the potential bias in our findings.

14

	Introduction
	Related Work
	Approach
	Problem Statement
	Statement Embedding Using RNN
	Training of Warm-Up Phase
	Vulnerability Codebook and Subsequent Main Training Phase
	Collect vulnerable scopes from Vulnerable Functions
	Learn to Transport Vulnerable Scopes to Vulnerability Centroids in Codebook
	Main Training Phase

	Vulnerability Identification Through Explicit Vulnerability Patterns Matching

	Experiments
	Experimental Dataset and Baseline Methods
	Parameter Settings and Model Training
	Main Results
	Ablation Study

	Conclusion
	Appendix
	Self-Attention of Transformer Encoders
	Cross Attention for Selecting Vulnerability Centroids
	Details of Baseline Methods
	Hyper-Parameter Settings of Our OptiMatch Approach
	Discussion

