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Abstract—Software vulnerabilities are prevalent in software
systems and the unresolved vulnerable code may cause system
failures or serious data breaches. To enhance security and prevent
potential cyberattacks on software systems, it is critical to (1)
early detect vulnerable code, (2) identify its vulnerability type,
and (3) suggest corresponding repairs. Recently, deep learning-
based approaches have been proposed to predict those tasks based
on source code. In particular, software vulnerability prediction
(SVP) detects vulnerable source code; software vulnerability clas-
sification (SVC) identifies vulnerability types to explain detected
vulnerable programs; neural machine translation (NMT)-based
automated vulnerability repair (AVR) generates patches to repair
detected vulnerable programs. However, existing SVPs require
much effort to inspect their coarse-grained predictions; SVCs
encounter an unresolved data imbalance issue; AVRs are still
inaccurate. I hypothesize that by addressing the limitations of
existing SVPs, SVCs and AVRs, we can improve the accuracy
and effectiveness of DL-based approaches for the aforementioned
three prediction tasks. To test this hypothesis, I will propose (1)
a finer-grained SVP approach that can point out vulnerabilities
at the line level; (2) an SVC approach that mitigates the data
imbalance issue; (3) NMT-based AVR approaches to address
limitations of previous NMT-based approaches. Finally, I propose
integrating these novel approaches into an open-source software
security framework to promote the adoption of the DL-powered
security tool in the industry.

Index Terms—Cybersecurity, Software Vulnerability, Software
Security

I. RESEARCH PROBLEM AND HYPOTHESIS

Software vulnerabilities are security flaws, glitches, or

weaknesses found in software code [11] that could be ex-

ploited or triggered by attackers. Those unresolved vulnerable

programs associated with critical software systems may result

in extreme security or privacy risks. For instance, the recent

data breaches of Optus [2] (a telecommunications company)

and Medibank [30] (a private health insurer) have put millions

of customers’ privacy in danger. Thus, software security is

an essential aspect needed to be considered during the de-

velopment of software systems to prevent irreversible crises

afterwards.

Recently, researchers have proposed various Deep Learning-

based approaches that can learn source code patterns during

training and predict whether a software program (e.g., a file

or a function) is vulnerable [6], [26], [27], [34], [39]. The

DL-based methods are more accurate than program analysis-

based tools that rely on predefined vulnerable code patterns

to capture vulnerabilities [10]. Some also proposed DL-based

methods to identify the vulnerability types (i.e., vulnerability

classification) of detected vulnerabilities that can provide more

in-depth analysis for security analysts [1], [14], [36]. In

addition, the rise of automated vulnerability repair (AVR)

using DL models opens a new possibility to suggest repairs

for vulnerable programs automatically [8], [9].
However, existing DL-based approaches still have limita-

tions that can be addressed to further improve their perfor-

mance and applicability to be adopted in practice. Specifically,

the vulnerability prediction approaches still provide the coarse-

grained level prediction that may require more effort from end

users to capture the actual vulnerable code; the vulnerability

classification approaches encounter the data imbalance issue

that hinders the model performance; the performance of AVR

models still has much room for improvement.
In addition, the shift-left testing concept (i.e. move software

testing earlier in project timelines) has been proposed to

encourage performing software testing at earlier stages of

development instead of late phases of development. Thus, vul-

nerabilities could ideally be found and fixed earlier. Program

analysis (PA)-based tools such as CPP Check [29] are available

in an integrated development environment (IDE) like Visual

Studio Code [31]. However, to date, DL-based security tools

are still not available in IDEs to support developers.
I hypothesize that by addressing the limitations of current

DL-based approaches for software vulnerability prediction
(detection), classification, and repair, we can improve the
accuracy and effectiveness of DL-based approaches for the
aforementioned three prediction tasks. In my dissertation, I

will test this hypothesis by focusing on the following research

areas:

1) DL-based Software Vulnerability Prediction (Sec-
tion II-A): Numerous software vulnerability predictions

using DL models have been proposed. In particular,

RNN-based models [26], [27] treat input programs as

sequences of tokens and learn the program represen-

tation word-by-word sequentially whereas GNN-based

models [6], [33], [39] treat input programs as graphs

and learn the program representation based on the dif-

ferent graph properties of code (e.g., data flow graph).

However, those approaches still predict vulnerabilities at
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coarse-grained levels (e.g., file or function levels) that

can only predict vulnerable files or functions. I plan to

propose a line-level vulnerability prediction approach. I

argue that such predictions can point out which line in a

function is vulnerable, which may save security analysts’

effort from inspecting coarse-grained predictions.

2) DL-based Software Vulnerability Classification (Sec-
tion II-B): DL-based software vulnerability classifica-

tion (SVC) approaches have been proposed to identify

vulnerability types (i.e., CWE-ID [13]) [14], [36]. The

SVC task is a long-tailed learning task where the model

needs to combat highly imbalanced data (the number

of observations of each CWE-ID is imbalanced) during

training to achieve promising performance on both com-

mon and rare CWE-IDs. Previous approaches tried mit-

igating this challenge using data augmentation [14] or

ignoring rare CWE-IDs [36]. However, the performance

did not improve and the imbalance problem remains

unresolved. I plan to propose a method to mitigate

the imbalanced data based on the hierarchical nature

of CWE-IDs. I argue that the proposed method will

produce more balanced data and the models learned

from which may have better accuracy for common and

rare CWE-IDs.

3) DL-based Automated Vulnerability Repairs (Sec-
tion II-C): Recently, neural machine translation (NMT)-

based methods have been proposed [8], [9], [22], [28],

which treat automated vulnerability repair (AVR) as

a sequence-to-sequence problem where the encoders

encode the input programs and the decoders generate

corresponding patches or the complete repaired version

of the input. In particular, Chen et al. [8] propose

VRepair that leverages a transformer architecture to

improve from RNN-based NMTs and context matching

to shorten the repair length. However, the performance

of VRepair is still not accurate due to the limita-

tions mentioned in Section II-C. In addition, context

matching can not distinguish repeated patterns (code

snippets with the same context) in a vulnerable program

and hence does not guarantee mapping repair patches

perfectly to vulnerable programs. I plan to leverage

a large pre-trained transformer model and develop a

perfect matching technique that can distinguish repeated

patterns. I argue that by addressing the limitations of the

VRepair approach, we can develop a more accurate and

applicable AVR method.

4) A DL-based Software Security Tool (Section II-D):
PA-based tools such as CPP Check [29] and Check-

marx [7] have been integrated into the software de-

velopment life cycle. However, DL-based automated

vulnerability prediction methods are not available for

developers. I plan to integrate my proposed approaches

into a framework to promote the adoption of the DL-

based security tool in the industry.

II. CONTRIBUTIONS AND RESULTS ACHIEVED SO FAR

In this section, I introduce each of my four main research

areas through the following flow. First, I point out the existing

problems and then present my proposed solution (or solutions

that will be proposed). Second, I introduce the research meth-

ods used to evaluate my proposed solutions and the achieved

results (if any). Last but not least, I describe the direction

of future work that can be explored to further improve the

solutions and contribute to the community.

A. DL-based Software Vulnerability Prediction

DL-based approaches have been proposed [6], [26], [27],

[34], [39] to learn vulnerability patterns through representation

learning. DL-based approaches dynamically learn the mapping

between the representation of source code and the ground

truth labels (i.e., whether a given piece of code is vulnera-

ble) while program analysis-based methods rely on manual

predefined vulnerability patterns. Thus, DL-based approaches

were shown to be more effective than program analysis-based

methods [10]. However, previous DL-based approaches are

still coarse-grained and only predict at the file or function

levels.

Recently, Li et al. [25] proposed the IVDetect approach to

address the need for fine-grained vulnerability prediction based

on Recurrent Neural Networks (RNN) and Graph Convolution

Networks (GCN). Li et al. [25] demonstrated that their IVDe-

tect approach outperforms the state-of-the-art approaches [6],

[26], [27], [34], [39] on function-level and subgraph-level

vulnerability prediction. Nevertheless, IVDetect has the fol-

lowing three limitations: (1) the RNN architecture of IVDetect

is not effective to capture long-term dependencies of source

code input; (2) the training data of VDetect is limited to a

project-specific dataset; (3) the subgraph-level prediction is

still coarse-grained.

To address the limitations of IVDetect, I proposed a finer-

grained approach named LineVul [17] (accepted at MSR

2022) which can predict both function-level and Line-level

Vulnerabilities. First, LineVul leverages a transformer-based

architecture that can better handle the long-term dependencies

of input sequence than RNNs due to the perfect memory

of its self-attention mechanism [35]. Second, the transformer

architecture used by LineVul was pre-trained using a masked

language modelling (MLM) technique on a large 20GB of

code corpus (i.e., CodeSearchNet [21]) by Feng et al. [16].

This gives LineVul a good initial code representation when

fine-tuned on the downstream vulnerability prediction task.

Third, LineVul provides line-level vulnerability predictions

which are finer-grained than subgraph-level predictions by

IVDetect. The line-level predictions of LineVul are obtained

through intrinsic model interpretation by summing up the self-

attention weight matrices from the transformer architecture.

I performed an empirical study [17] to assess the accuracy

and cost-effectiveness of the LineVul approach. This study

was conducted on the large-scale Big-Vul dataset [15] (same

studied dataset used by IVDetect), consisting of 188k+ C/C++
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functions across 348 real-world projects and 91 different vul-

nerability types. The high imbalance ratio between vulnerable

and non-vulnerable functions and the diverse vulnerability

types ensure the dataset mimics the real-world scenario of

vulnerability prediction. In the study, I asked the following

research questions:

(RQ1.1) How accurate is our LineVul for function-level
vulnerability predictions? LineVul achieves an F1 score of

0.91, which is 160%-379% better than the state-of-the-art

baselines with a median improvement of 250%. Similarly, our

LineVul achieves a Precision of 0.97 and a Recall of 0.86,

which outperform the baseline approaches by 322% and 19%,

respectively.

(RQ1.2) How accurate is our LineVul for line-level vul-
nerability localization? LineVul achieves a Top-10 Accuracy

of 0.65 on line-level predictions, which is 12%-25% more

accurate than the other baseline approaches.

(RQ1.3) What is the cost-effectiveness of our LineVul
for line-level vulnerability localization? LineVul achieves

the lowest Effort@20%Recall of 0.75, which is 29%-53%

less than other baseline approaches, demonstrating the cost-

effectiveness of LineVul.

Furture Work. First, the performance of LineVul may

be further improved if training a model using line-level la-

bels, which I will explore in my future work. Furthermore,

Jimenez et al. [23] has pointed out that current vulnerability

prediction approaches may encounter performance downgrade

when considering the realistic evaluation scenario such as the

time constraint. Thus, rigorous evaluation scenarios should be

explored.

B. DL-based Software Vulnerability Classification

As mentioned in the above Section II-A, various DL-based

SVP methods have been proposed to detect vulnerability

in different granularity. However, those approaches can not

identify what type of vulnerability is detected. This may

hinder security analysts to understand models’ predictions and

suggest mitigation strategies since SVP models only point

out where is the vulnerability and fail to explain what is the

detected vulnerability. Thus, software vulnerability classifica-

tion (SVC) approaches have been proposed to identify the

vulnerability type (i.e., CWE-ID [13]) and explain the detected

vulnerabilities [1], [14], [36].

However, the distribution of different vulnerability types is

highly imbalanced (i.e., long-tailed distribution) in the real

world and existing SVC methods still encounter an unresolved

data imbalance issue. For instance, Das et al. [14] leveraged

data augmentation [38] in their experiments but it did not

further improve the performance; Wang et al. [36] only focus

on the top 10 frequency CWE-IDs in their experiment to

mitigate the data imbalance, which hinders the model to

identify rare vulnerability types.

To address the imbalance issue of the SVC task, I will

propose a method based on the hierarchical nature of vul-

nerability types, which can reduce the imbalance ratio of a

dataset and learn better models. I will empirically evaluate the

proposed approach on a widely-adopted benchmark dataset

and compare it with (1) other SVC models and (2) long-tailed

learning techniques that focus on mitigating the imbalance

training process. I will ask the following research questions

to assess the proposed method:

(RQ2.1) What is the accuracy of the proposed approach
for classifying software vulnerabilities (i.e., CWE-IDs)?

(RQ2.2) Does the proposed approach outperform long-
tailed learning methods for imbalanced data?

(RQ2.3) What are the contributions of the components of
the proposed approach?

Furture Work. Another mainstream of SVC methods is

to leverage multi-task learning that could improve the model

by learning with other related tasks (e.g., CVSS [12] severity

score classification). However, the existing methods rely on

loss summation to update the model for different tasks, which

does not guarantee an optimal solution for all of the tasks [3],

[19], [24]. To address this limitation, I will propose a multi-

objective learning-based approach that can find out the optimal

solution for each task when updating the model.

C. DL-based Automated Vulnerability Repairs

As mentioned in the above Section II-A and II-B, re-

searchers proposed various DL-based approaches to help

under-resourced security analysts predict vulnerability [6],

[26], [27], [34], [39], localize the location of vulnerabilities

down to the line level [17], [20], and classify the vulnerability

types [1], [14], [36] to obtain the potential impact of the vul-

nerability and the corresponding mitigation strategy based on

its type. However, security analysts still have to spend a huge

amount of effort manually fixing or repairing vulnerabilities

after the detection [5], [32].

Recently, Chen et al. [8] proposed VRepair, an automated

vulnerability repair (AVR) approach based on neural machine

translation (NMT) using an encoder-decoder transformer.

VRepair was proposed to shorten the repair length (i.e., length

of decoder outputs) using a context-matching method and

address various challenges of prior work in the AVR problem

(e.g., SequenceR [9], an RNN-based NMT model). However,

VRepair has the following three limitations: (1) VRepair was

pre-trained on a small bug-fix corpus which may not generate

optimal vector representations of input source code; (2) VRe-

pair relied on word-level tokenization with copy mechanism

to handle out-of-vocabulary(OOV) and not overload the vocab

size, which still has limited ability to generate new tokens

that never appeared before; (3) VRepair leveraged the vanilla

transformer with an absolute positional encoding which limits

the ability of its self-attention to learn the relative position

information of code tokens within input sequences.

To address the limitations of VRepair, I proposed a T5-based

Vulnerability Repair approach named VulRepair [18] (ac-

cepted at FSE 2022). First, VulRepair employs a CodeT5 [37]
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model which was pre-trained with multiple learning objectives

on large code bases consisting of 8.35 million functions to

generate more meaningful representations of source code.

Second, VulRepair employs BPE subword tokenization to

handle the OOV issue. Third, the T5 architecture used by

VulRepair considers the relative position information of each

embedded code token in self-attention.

I performed an empirical study [18] to assess the accuracy

of the VulRepair approach and its component. This study is

conducted on CVEFixes [4] and Big-Vul dataset [15] which

consist of 8,482 vulnerable functions and their corresponding

patches provided by Chen et al. [8]. Moreover, the vulnerabil-

ities were collected from 1,754 open-source software projects

with diverse 180+ vulnerability types spanning from 1999 to

2021. In the study, I asked the following research questions:

(RQ3.1) What is the accuracy of our VulRepair for gener-
ating software vulnerability repairs? VulRepair achieves a

Percentage of Perfect Prediction (%PP) of 44%, which is 21%

more accurate than VRepair [8] and 13% more accurate than

another baseline method, CodeBERT [16].

(RQ3.2) What is the benefit of using a pre-training compo-
nent for vulnerability repairs? Regardless of the model ar-

chitectures being pre-trained, the pre-training corpus including

both programming language and natural language improves the

%PP by 30%-38% for the performance of vulnerability repair

approaches. The result highlights the substantial benefits of

using the pre-training component in the AVR task.

(RQ3.3) What is the benefit of using BPE tokenization for
vulnerability repairs? Regardless of the model architectures,

the BPE subword tokenization improves the %PP by 9%-

14% for the performance of vulnerability repair approaches.

The result highlights the substantial benefits of using BPE

tokenization in the AVR task.

(RQ3.4) What are the contributions of the components
of our VulRepair? The pre-training component of VulRe-

pair is the most important component to achieving satisfying

performance. Besides, without a proper design of the model

architecture and tokenizer, the performance of VulRepair can

be drastically decreased. This finding highlights that designing

an NMT-based automated vulnerability repair approach is

still challenging, requiring a deep understanding of modern

Transformer architectures to achieve satisfying results.

Furture Work. Despite the advancement of VulRepair,

there still exist two aspects of NMT-based AVR methods

that are worth to be explored and improving. First, exist-

ing NMT models consider identically vulnerable and non-

vulnerable parts of code and only implicitly learn to localize

the vulnerability to generate corresponding repairs. Second,

the context-matching repair technique proposed by Chen et
al. [8] may fail due to the vulnerable code having repeated

patterns that are used to match the repair. To address the two

limitations, I will explore (1) a method that can focus more

on vulnerable code when generating the corresponding repairs

and (2) a method that can achieve perfect matching for the

context-matching repair.

D. A DL-based Software Security Tool

As introduced in the above three sections, I will focus on

improving DL-based methods to predict, classify, and repair

vulnerable source code in my thesis, which helps automate the

software security analysis process. In particular, Section II-A

focuses on DL methods for the early vulnerability detection

stage; Section II-B focuses on DL methods for identifying

types of detected vulnerabilities to provide more explanations;

Section II-C focuses on DL methods for suggesting repairs of

detected vulnerabilities.

The program analysis-based method such as Checkmarx [7]

has been integrated into software development workflows to

achieve security testing during development. However, DL-

based approaches have not been integrated into any IDEs to

help detect security issues during software development.

To bridge the gap between DL-based vulnerability ap-

proaches and developers, I will propose a real-time software

security tool that integrates my proposed methods to predict,

classify, and repair vulnerable source code during software

development. This tool will be developed as an extension of

Visual Studio Code [31] to support developers to capture po-

tential security issues during the early stage of the development

life cycle.

I will conduct a qualitative user study to obtain software

practitioners’ perceptions of the proposed tool. I will answer

the following research question to assess the usefulness of the

proposed tool based on an empirical survey of practitioners:

(RQ4.1) How do software practitioners perceive the use-
fulness of the proposed DL-based security tool?

Furture Work. I plan to keep developing the tool into a

framework where end users can use their models to gener-

ate predictions for each task. Moreover, this tool can also

be integrated into the CI/CD pipelines to capture potential

vulnerabilities after committing the code.

III. TIMELINE

I just completed the first year of my 3-year PhD program.

In my remaining years, I will keep improving on my four

research areas following the direction mentioned before.

IV. CONCLUSION

In my PhD program, I will address the limitations of the

existing approaches and the unresolved challenges of DL-

based software vulnerability prediction, classification, and

repair. In particular, I will propose (1) finer-grained SVP

methods that could save security analysts’ effort in inspecting

coarse-grained predictions; (2) SVC methods that mitigate

the imbalanced data issue; (3) AVR methods that are more

accurate and have perfect-matched repair patches. Last but

not least, I will integrate these novel approaches into an open-

source software security framework to promote the adoption

of the DL-powered security tool in the industry.
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