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Abstract—Just-In-Time (JIT) defect prediction (i.e., an AI/ML
model to predict defect-introducing commits) is proposed to help
developers prioritize their limited Software Quality Assurance
(SQA) resources on the most risky commits. However, the
explainability of JIT defect models remains largely unexplored
(i.e., practitioners still do not know why a commit is predicted as
defect-introducing). Recently, LIME has been used to generate
explanations for any AI/ML models. However, the random
perturbation approach used by LIME to generate synthetic
neighbors is still suboptimal, i.e., generating synthetic neighbors
that may not be similar to an instance to be explained, producing
low accuracy of the local models, leading to inaccurate explana-
tions for just-in-time defect models. In this paper, we propose
PyExplainer—i.e., a local rule-based model-agnostic technique
for generating explanations (i.e., why a commit is predicted as
defective) of JIT defect models. Through a case study of two
open-source software projects, we find that our PyExplainer
produces (1) synthetic neighbors that are 41%-45% more similar
to an instance to be explained; (2) 18%-38% more accurate local
models; and (3) explanations that are 69%-98% more unique
and 17%-54% more consistent with the actual characteristics of
defect-introducing commits in the future than LIME (a state-of-
the-art model-agnostic technique). This could help practitioners
focus on the most important aspects of the commits to mitigate
the risk of being defect-introducing. Thus, the contributions
of this paper build an important step towards Explainable
AI for Software Engineering, making software analytics more
explainable and actionable. Finally, we publish our PyExplainer
as a Python package to support practitioners and researchers
(https://github.com/awsm-research/PyExplainer).

Index Terms—Explainable AI, Just-In-Time Defect Prediction,
Explainable Software Analytics

I. INTRODUCTION

Modern software development projects tend to release soft-

ware products in rapid cycles. To ensure the quality of all

newly arrived commits, developers need to conduct code

review and provide feedback prior to merging them into the

release branch. However, such code review activities are still

time-consuming and expensive. Thus, performing exhaustive

code review activities for all commits is infeasible due to the

limited Software Quality Assurance (SQA) resources.

Just-In-Time (JIT) defect prediction [17, 19, 26, 30]—

an AI/ML model to predict defect-introducing commits—has

been proposed to help developers efficiently prioritize their

limited SQA resources on the most risky commits. In addition,

JIT defect prediction is also used to provide insights about the

important characteristics of defect-introducing commits. Such

§The corresponding author. Email: chakkrit@monash.edu

insights can help QA teams and managers to develop proactive

software quality improvement plans to prevent pitfalls in the

past that lead to software defects in the future [27].

However, the predictions of existing JIT defect prediction

approaches are still not explainable, hindering the adoption of

JIT defect models in practice [5, 13, 14, 40]. Recent research

shows that practitioners still asked many why-questions (e.g.,

why a commit is predicted as defective) [5, 13, 14, 41], since

current JIT defect prediction approaches are treated as black-

box which only provide the predictions, not the explanations.

Such a lack of explainability of JIT defect prediction ap-

proaches could lead to suboptimal software quality assurance

practices and suboptimal operational decision-makings.

Recently, LIME—a state-of-the-art model-agnostic tech-

nique [32]—has been adopted in software engineering research

(e.g., line-level just-in-time defect prediction [30], and explain-

able file-level defect prediction [13]). LIME is a technique

that explains a prediction of AI/ML models (i.e., what are the

features that influence a given prediction). Generally speaking,

given an instance to be explained (e.g., a commit), LIME

produces an explanation from a local model (F ′) that is trained

using the randomly generated synthetic instances around the

instance to be explained (X ′) (i.e., synthetic neighbors) and

the predictions (Y ′) obtained from the global black-box model.

This allows the local model to mimic the behavior of the

underlying global black-box models.

The quality of explanation produced by LIME heavily relies

on the neighborhood generation process [12]. Ideally, the

neighborhood generation process should generate synthetic

neighbors that are closely similar to the instance to be ex-

plained so that the local model can accurately approximate

the prediction of the global models. In LIME, the random

perturbation approach is used to generate synthetic neighbors.

However, such a simple random perturbation approach may

not be suitable for sparse and high dimensional data like

JIT datasets [52]. It is possible that the random perturbation

approach will generate synthetic neighbors that may not be

similar to an instance to be explained, which will lead the

local model to inaccurately approximate the predictions of the

global model. Thus, these local models may not be effective

in generating explanations (e.g., generic).

In this paper, we propose PyExplainer, a local rule-based

model-agnostic technique for explaining the predictions of JIT

defect prediction models. To produce a more accurate explana-

tion for the prediction of JIT defect models, our PyExplainer
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generates synthetic neighbors based on the actual character-

istics of defect-introducing commits in the JIT dataset using

the crossover and mutation operations. Instead of generating

an explanation with a single rule feature with an importance

score like LIME (e.g., the importance score of Churn>100 is

0.9), our PyExplainer generates an explanation that accounts

for interactions between rule features (e.g., Churn>100 &

#Reviewers<2 ⇒ Defect).

To evaluate our PyExplainer, we compare with LIME [32]

in three dimensions: (1) the similarity between synthetic
neighbors and an instance to be explained; (2) the accuracy
of the local models; and (3) the effectiveness in generating
explanations. Through a case study of 40,798 commits that

span across two large-scale software systems (i.e., OpenStack

and Qt), we address the following three research questions:

(RQ1) Does our PyExplainer produce better synthetic
neighbors than LIME for JIT defect models?
The synthetic neighours produced by our PyExplainer

are 41%-55% more similar to an instance to be ex-

plained than LIME, indicating that our PyExplainer

produces synthetic neighbors that are more closely

similar to an instance to be explained than LIME.

(RQ2) Does our PyExplainer produce higher accuracy of
local models than LIME for JIT defect models?
When explaining the RF and LR JIT defect models,

PyExplainer produces local models that are 18%-38%

more accurate (AUC) than the local models produced

by LIME, indicating that the PyExplainer produces

local models that have a higher ability to discriminate

the characteristics between defect and clean classes.

(RQ3) Is our PyExplainer more effective in generating
explanations than LIME for JIT defect models?
The explanations generated by our PyExplainer are

69%-98% more unique (i.e., more specific to an in-

stance to be explained) than LIME. On the other

hand, the explanations generated by our PyExplainer

are 17%-54% more consistent with the actual defect-

introducing commits in the testing data than LIME.

Thus, the explanations generated by PyExplainer could help

practitioners to focus on the most important aspects that are

associated with the risk of being defect-introducing for a given

prediction, instead of focusing on the less important aspects.

Contributions. The contributions of this paper are as follows:

• We propose PyExplainer, a local rule-based model-

agnostic technique for explaining the predictions of JIT

defect models.

• Our results show that PyExplainer produces (1) synthetic

neighbours that are more similar to an instance to be

explained; (2) more accurate local models; and (3) ex-

planations that are more unique and more consistent with

the actual characteristics of defect-introducing commits in

the future than LIME.

• Finally, we developed a proof-of-concept of visual ex-

planations and what-if visualizations, and published our

PyExplainer as a python package.

II. RELATED WORK & RESEARCH QUESTIONS

Prior studies pointed out that practitioners often do not

understand the reasons behind the predictions of software

analytics [5, 14, 25]. Recent work also raises concerns that

a lack of explainability of software analytics often hinder the

adoption of software analytics in practice [5, 13, 14, 18, 40,

41]. Importantly, Jiarpakdee et al. [14] found that 91% of

recent defect prediction studies often focus on improving the

accuracy, while as few as 4% of recent defect prediction stud-

ies focus on making file-level defect prediction models more

explainable. However, Jiarpakdee et al. [14] found that prac-

titioners perceived that providing the explanations of defect

prediction models are as important and useful as improving the

accuracy of defect prediction models. Yet, the explainability

of JIT defect models remains largely unexplored.

The explanability of software analytics can be achieved

at the global and the local levels.

The global explanation can be produced using model-

specific interpretation techniques that are built in the AI/ML

models (e.g., ANOVA for regression analysis, variable impor-

tance analysis for random forest). This explanation helps re-

searchers and software practitioners understand what important

features that influence the predictions of the models [35, 45–

48]. However, this global explanation is not specific to the

prediction of each instance (e.g., a commit) in the testing or

unseen data, since the global explanation is derived from the

training dataset [49]. Hence, the global explanation may not

be accurate for a particular prediction.

On the other hand, the local explanation is produced for

a particular prediction of an instance in the testing or unseen

dataset, which allow practitioners better understand the reasons

behind the predictions of the AI/ML models [13]. LIME [32]

is a state-of-the-art model-agnostic technique which has been

widely adopted to address various software engineering prob-

lems and other domains (5,000+ citations). For example, recent

work [30, 49] employed LIME for line-level defect predictions

(i.e., identifying defective lines that contain the risky code

tokens explained by LIME). Jiarpakdee et al. [13] found that

LIME [32] is effective in explaining the predictions of file-

level defect prediction models (i.e., why a file is predicted as

defective). However, LIME has the following limitations.

First, the LIME’s neighborhood generation process is
still suboptimal. The quality of an explanation for a predic-

tion heavily relies on the quality of the generated synthetic

neighbors around the instance to be explained [23]. Thus,

if the neighbor generation process is suboptimal, the local

model may fail to provide accurate insights about the logical

reasoning of the global model. Jia et al. [12] found that

the size of the neighbourhood has a large impact on the

quality of the explanation. Krishnan et al. [22] found that

when a model is learned from sparse and high dimensional

data (e.g., just-in-time defect dataset [52]), the model is often

underfitting, failing to capture the phenomenon of the data

being trained. Thus, the neighbor generation process should

ideally generate synthetic neighbors that are similar to the
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instance to be explained. Therefore, we investigate whether

our PyExplainer produce better synthetic neighbors (i.e., the

synthetic neighbors that are more similar to an instance to be

explained) than LIME for JIT defect models. We formulate

the following RQ:

(RQ1) Does our PyExplainer produce better synthetic
neighbors than LIME for JIT defect models?

Second, the approximation of the LIME local models to
the predictions of the global model is still suboptimal. One

of the key principles of model-agnostic techniques is to build

the best local model to mimic the behavior of the predictions

of the global models. Accuracy is often used to measure the

extent to which how well the local model can approximate the

predictions of the global model [32]. Thus, a high accuracy of

local models is desirable in order to derive the highest quality

explanation, i.e., the local models can accurately approximate

the global model predictions for a subset of the data (e.g., local

surrogate models). Since LIME uses the random perturbation

method to generate synthetic neighbors, the approximation of

the LIME local models to the predictions of the global model

may be suboptimal, leading to the inaccurate local models

produced by LIME. Thus, we formulate the following RQ:

(RQ2) Does our PyExplainer produce higher accuracy of
local models than LIME for JIT defect models?

Third, the explanations generated by LIME are still
not specific to an instance to be explained. Another key

principle of the model-agnostic techniques is to build a unique

explanation that is specific to the prediction of an instance

to be explained. Thus, explanations should be unique and

highlight the key characteristics (i.e., features) of a commit

that leads a global model to predict as defect-introducing.

However, LIME uses a Quantile discretization (i.e., 1st, 2nd,

3rd Quantiles) for generating rule features. The three bins used

by LIME may not be enough to capture the highly-complex

and highly-skewed JIT defect datasets. Thus, the rule features

used by LIME may produce generic explanations that may

not be specific to the instance to be explained, which may not

reflect the actual characteristics of defect-introducing commits.

Therefore, we formulate the following RQ:

(RQ3) Is our PyExplainer more effective in generating
explanations than LIME for JIT defect models?

III. OUR PYEXPLAINER: A LOCAL RULE-BASED

MODEL-AGNOSTIC TECHNIQUE

In this section, we present our PyExplainer, a local rule-

based model-agnostic approach for explaining the predictions

of JIT defect models.

Overview. Figure 1 illustrates an overview of the PyEx-

plainer approach, which consists of four main steps. First,

given an instance to be explained (i.e., a commit) and a

global model, our PyExplainer will generate synthetic neigh-

bors around the instance to be explained using the crossover

and mutation techniques [37]. Second, our PyExplainer will

obtains the predictions of the synthetic neighbors from the

global model. Third, our PyExplainer builds a local rule-based

regression model in order to learn the associations between the

characteristics of the synthetic instances and the predictions

from the global model. In the fourth step, our PyExplainer

generates an explanation from the local model for the instance

to be explained. We now describe each of the four steps below.

(Step 1) Generate Synthetic Neighbors Around the
Instance to be Explained. Our PyExplainer will first generate

synthetic neighbors (X ′) around the instance to be explained

using the crossover and mutation techniques [37]. To do so,

PyExplainer will find an initial set of actual neighbors, i.e.,

the actual instances around the instance to be explained in the

training dataset. To identify the actual neighbors, PyExplainer

applies the exponential kernel function (see Eq. 1) to calculate

the similarity score between each instance in the training

dataset (ik) and the instance to be explained (ie).

K(ik, ie) = exp(−dist(ik, ie)
2

2w2
) (1)

where dist(ik, ie) is the euclidean distance between instances

ik and ie, and w is the kernel width as the multiplication of

0.75 and the number of features of an instance (w = 0.75 ×
#features) as suggested by Ribeiro et al. [32].

Based on the initial set of actual neighbor, PyExplainer

generates synthetic neighbors using crossover and mutation

techniques to expand the initial set. The calculation of the

crossover (Icrossover) and mutation (Imutation) techniques can

be derived as follows:

Icrossover = i1 + (i2 − i1) ∗ α (2)

Imutation = i1 + (i2 − i3) ∗ μ (3)

where i1, i2, and i3 are the randomly selected neighbourhood

instances, α is a randomly generated number between 0 and

1; and μ is a randomly generated number between 0.5 and 1.

(Step 2) Obtain the Predictions of the Synthetic In-
stances using the Global Model. In Step 1, only the features

of a synthetic neighbor (X ′) are generated. Hence, PyEx-

plainer uses the global model to obtain the predictions (i.e.,

whether it is defective or clean given features of a synthetic

instance). This allows PyExplainer to learn the behaviour of

the underlying global model.

(Step 3) Build a Local Rule-based Regression Model
using the RuleFit technique. To build a local model (F ′),
PyExplainer uses a rule-based logistic regression technique,

called RuleFit [7]. RuleFit is a classifier that combines tree

ensembles and linear models, which allows us to interpret the

model like a traditional regression model, while understanding

the logical reasons learnt from the rule features.

Broadly speaking, RuleFit will first generate rule features
(X ′

R), e.g., {Churn > 100 & #Reviewers < 2} based on

ensemble decision trees (e.g., Gradient Boosting Trees). Then,

RuleFit uses a regression model (i.e., logistic regression for

binary outcomes, or linear regression for continuous outcomes)

to model the association between the predicted outcomes (Y ′)
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Score=15, Coef. = +/-

Synthetic Neighbors

Fig. 1: An overview of the PyExplainer approach. Given an

instance to be explained, PyExplainer produces four main

component i.e., (1) synthetic neighbors, (2) a local model, and

(3) an explanation. Each PyExplainer’s explanation produces

three pieces of information i.e., (1) a rule-based explanation,

(2) an importance score, and (3) the direction of relationship

of either supporting (+) or contradicting (-) the prediction.

and the rule features (X ′
R) together with the original features

(X). Then, the degree of importance and the coefficients of

rule features and the original features can be analyzed from

this regression model.

The use of RuleFit in our PyExplainer will address the

limitation of LIME which does not account for interactions

between features (i.e., the combination of rule features). Al-

though existing rule-based model-agnostic techniques (e.g.,

SQAPlanner [31], Anchors [33], and LORE [9]) have been

proposed, these techniques employed association rule mining

techniques (e.g., Apriori, FP-Growth) which do not provide the

degree of importance of the rules and the coefficients. Without

the degree of importance of the rules and the coefficients

provided by such techniques, we cannot quantify how strong

the association between the rules and the predicted outcome

and what the direction of the relationship is.

(Step 4) Extract an Explanation from the Local Rule-
based Model. To generate an explanation, our PyExplainer

analyzes the local model which is built using the RuleFit tech-

nique in Step 3. In the local model, there are three key pieces

information: (1) rule features, (2) importance scores, and (3)

coefficients. The importance score indicates the strength of

the association between the rule feature and the predicted

outcome. The coefficient can be used to indicate the direction

of the relationship. For example, a positive coefficient indicates

that a rule feature has a contribution towards the prediction of

the TRUE class (i.e., DEFECT).

Based on the three key pieces of information in the local

model, our PyExplainer generates an explanation by identify-

ing the rule feature that has the highest importance score, has

a positive coefficient, and satisfies the actual feature values of

the instance to be explained. For example, suppose that a rule

feature (Churn>100 & #Reviewers<2) has the highest impor-

tance score and has a positive coefficient, our PyExplainer will

generate the following rule-based explanation: Churn>100 &

#Reviewers<2 ⇒ DEFECT, which means that a commit is

predicted as defective since Churn is greater than 100 and the

number of reviewers is less than 2.

IV. EXPERIMENTAL DESIGN

In this section, we present the studied datasets and explain

the details of our experimental design.

Studied JIT Datasets. We select just-in-time defect datasets

from two large-scale open-source software projects (i.e., Open-

stack and Qt) as provided by McIntosh and Kamei [27].

Openstack is an open-source software for cloud infrastruc-

ture service. Qt is a cross-platform application development

framework. We choose Openstack and Qt datasets for our

study, since both datasets (1) are often used as a benchmark in

defect prediction studies [10, 11, 27, 30]; and (2) are manually

verified for the validity of the SZZ algorithm [36] to reduce

the number of false positives and false negatives [4, 51]. Table

I provides an overview of the studied datasets.

Commit Features. For each dataset, there are 17 commit-level

features that span across 5 dimensions, i.e., Size (e.g., lines

added, lines deleted), Diffusion (e.g., #modified files), History

(#developers), Experience, and Code Review Activities.

Experiment Design. Figure 2 presents an overview of our

experimental design, which is composed of four main steps.

(Step 1) Split Data into Training and Testing Datasets. To

ensure that the evaluation of our just-in-time defect prediction

reflects a real-world scenario, we first sort the date of the com-

mits to preserve the order of the commits in a chronological

order [30, 43]. Then, we use a time-wise hold-out validation

technique (as used by McIntosh and Kamei [27]) to split the

dataset into training (70%) and testing (30%) datasets. The use

of the time-wise hold-out validation technique ensures that the

commits that appear later will not be used in model training.

Similarly, the commits that appear earlier will not be used in

model evaluation.

(Step 2) Build JIT Defect Models. For each training

dataset, we first mitigate collinearity using AutoSpearman and

handle class imbalance using SMOTE prior to build JIT defect

models. Below, we describe each step in detail.

(Step 2-1) Mitigate Collinearity using AutoSpearman. To

ensure that the interpretation of our JIT defect models is highly

accurate, we mitigate collinearity and multi-collinearity, as

suggested by prior studies [15, 16, 38]. We use AutoSpearman,

an automated feature selection approach to automatically se-

lect one feature from each group of highly correlated features

that shares the least correlation with the other features that are

not in the group [16]. As suggested by Kraemer et al. [20], we

use a threshold of 0.7 to indicate strong correlation between

features. As suggested by Fox [6], we use a VIF threshold
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TABLE I: An overview of the studied JIT defect datasets provided by McIntosh and Kamei [27].

Training Data Testing Data
Project Start Date End Date # Commits # Defective Commits Start Date End Date # Commits # Defective Commits

Openstack 11/30/2011 08/13/2013 9,246 980 (11%) 08/13/2013 02/28/2014 3,963 646 (16%)

Qt 06/18/2011 05/08/2013 19,312 1,577 (8%) 05/08/2013 03/18/2014 8,277 476 (6%)
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Fig. 2: An overview of the experimental design.

value of 5 to indicate multicollinearity. We use the implemen-

tation of AutoSpearman as provided by the PyExplainer
Python package. After using AutoSpearman, we finally select

7 features that are not highly-correlated with each other.

(Step 2-2) Handle Class Imbalance using SMOTE. To

ensure that the predictions of our JIT defect models are

highly accurate, we apply a class rebalancing technique, as

suggested by prior work [1, 39]. Since the defective ratio of

our studied JIT defect datasets are highly imbalanced (i.e., 8%-

16%), we apply SMOTE [2] to handle class imbalance only
on the training dataset. We choose the SMOTE technique,

as suggested by prior work [1, 39] who found that the

SMOTE technique outperforms other class rebalancing tech-

niques. SMOTE performs the following steps. First, SMOTE

calculates the k-nearest neighbors of a set of minority class.

Then, SMOTE randomly chooses the neighbors and generates

synthetic instances around such neighbors. Finally, SMOTE

combines the synthetic instances with the undersampling of

the majority class to produce the final set of balanced in-

stances. We use the implementation of SMOTE as provided

by Imbalanced-Learn Python library [24]. We use the

default setting (k = 5) of SMOTE, since our experiment with

various k settings has shown that varying the k settings has

little impact on the performance of our JIT defect models.

(Step 2-3) Evaluate Global JIT Defect Models. We build

global JIT defect models using the training data of each

project. We select the two classification techniques that are

commonly-used in prior studies [8, 17], since they found that

Random Forests (RF) and Logistic Regressions (LR) often

outperform other classification techniques. Then, we evaluate

the global JIT defect models on the testing dataset using

2 effort-aware measures (i.e., Recall@20%effort, and Popt)

and 2 traditional performance measures (i.e., Area Under

the ROC Curve (AUC) and F1 (with a cutoff threshold of

0.5). We select classifiers using Recall@20%effort to ensure

that they are practical when they are deployed in practices

[28]. Recall@20%effort measures the percentage of correctly

predicted defect-introducing commits that can be found when

inspecting the top-20% LOC of the most risky commits.

Our global JIT defect models trained using both RF
and LR techniques achieve similar performance for both
OpenStack and Qt projects. Table II presents the accuracy

of the JIT defectt models. For Openstack, our RF classifier

achieves a Recall@20%Effort of 0.56 for RF and 0.54 for LR,

indicating that our JIT defect models can correctly predicted

54%-56% of defect-introducing commits when spending only

20% code inspection effort (i.e., LOC). Similarly, for Qt, our

RF classifier achieves a Recall@20%Effort of 0.83 for RF

and 0.82 for LR, indicating that our JIT defect models can

correctly predicted 82%-83% of defect-introducing commits

when inspecting only 20% code inspection effort (i.e., LOC).

(Step 3) Apply our PyExplainer and the LIME model-
agnostic techniques to generate explanations. For each

prediction of JIT defect models, we apply our PyExplainer

and LIME to generate an explanation of each prediction.

We choose LIME as a baseline comparison, since LIME has

been widely used in SE research [13, 29, 30, 49] Similar to

PyExplainer, LIME produces three main components: (1) syn-

thetic neighbors; (2) local models; and (3) explanations. LIME

performs the following four steps to produce an explanation.

First, LIME randomly generates synthetic neighbors sur-

rounding an instance to be explained using a random perturba-

tion method with an exponential kernel function of euclidean

distance. Second, LIME obtains the predictions of the syn-

thetic neighbors from the global JIT defect models. Third,

LIME builds a local sparse linear regression model (K-Lasso)

using the randomly generated instances and their predictions

from the global JIT defect models. Forth, LIME generates

an explanation using the coefficients of the local K-Lasso

model with three key pieces of information: (1) a decision

411

Authorized licensed use limited to: Monash University. Downloaded on December 12,2023 at 11:39:11 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: The accuracy of JIT defect models that are trained

using Random Forest (RF) and Logistic Regression (LR).

OpenStack
Classification Recall@20%Effort Popt AUC F1

Random Forest 0.56 0.82 0.75 0.36

Logistic Regression 0.54 0.82 0.66 0.36

Qt
Classification Recall@20%Effort Popt AUC F1

Random Forest 0.83 0.94 0.74 0.21

Logistic Regression 0.82 0.95 0.64 0.16

rule feature; (2) the importance score; and (3) the direction

of relationship of either supporting (+) or contradicting (-) the

prediction towards a TRUE class (i.e., Defect).

(Step 4) Evaluate the PyExplainer and LIME model-
agnostic techniques. Both PyExplainer and LIME use differ-

ent techniques to generate synthetic neighbors (i.e., crossover

and mutation vs. random perturbation) and the local models

(i.e., RuleFit vs. K-Lasso). Thus, they may produce different

explanations. Therefore, we aim to investigate which model-

agnostic technique is the best to generate an explanation of the

prediction obtained from JIT defect models. To evaluate Py-

Explainer and LIME, we focus on the three main components

along two dimensions. In the first dimension, we focus on the

common internal mechanism of the model-agnostic techniques

i.e., the synthetic neighbour and the accuracy of their local

models, since these two components are used to generate

an explanation for a prediction. In the second dimension,

we focus on the explanations generated by PyExplainer and

LIME. We describe the analysis approach for each research

question in Section V.

V. EXPERIMENTAL RESULTS

In this section, we present the approach, and results with

respect to our three research questions.

(RQ1) Does our PyExplainer produce better synthetic neigh-
bors than LIME for JIT defect models?
Approach. To address RQ1, we analyze the distance between

an instance to be explained and the synthetic instances around

the neighbourhood using the Euclidean Distance measure. The

Euclidean Distance measure is the calculation of distance

between two feature vectors in an n-dimensional feature

space (i.e., d(i1, i2) =
√∑n

j=1(i1j − i2j)2, where d(i1, i2)

is a Euclidean Distance of two instances i1 and i2). The

smaller the distance, the higher similarity of the both vectors

(instances). Thus, the lower distances between an instance to

be explained and the synthetic instances indicate that such

generated synthetic instances yield high similarity with the

instance to be explained.

For each instance to be explained in the testing dataset, we

calculate the Euclidean Distance between the instance to be

explained and their synthetic instances. Since the data is not

normally distributed, we compute the median value (instead

of the average) of the Euclidean Distance to approximate the
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Fig. 3: (RQ1) The Euclidean Distance of neighborhood in-

stances and instances to be explained, obtained from model-

agnostic techniques (i.e., PyExplainer and LIME).

average similarity of the instances around the neighbourhood.

Then, we compare the distributions of the median Euclidean

Distance of the synthetic neighbors produced by both PyEx-

plainer and LIME.

Finally, we apply two statistical test (i.e., Wilcoxon singed-

rank test and Cliff’s |δ| effect size) to identify whether dif-

ferences of the Euclidean Distance produced by PyExplainer

and LIME are statistically significant. The Wilcoxon signed-

rank test is a non-parametric test that measures the difference

of distribution between two population (i.e., the Euclidean

Distance of PyExplainer and LIME). Cliff’s |δ| is a non-

parametric effect size test that measures the magnitude of

the differences of the given two distributions. We use the

Cliff’s |δ| interpretation of Romano et al. [34] as follows, i.e.,

negligible for |δ| ≤ 0.147, small for |δ| ≤ 0.33, medium for

|δ| ≤ 0.474, and large for |δ| > 0.474 Finally, we compute

the relative percentage difference using the following equation:

%diff = PyExplainer−LIME
LIME × 100.

Results. The synthetic neighours produced by our Py-
Explainer is 41%-55% more similar to an instance to
be explained than LIME for both RF and LR JIT
defect models. Figure 3 shows that our PyExplainer achieves

41%-49% and 47%-55% lower Euclidean Distance for both

RF and LR JIT defect models for both Openstack and Qt.

For Openstack, we find that our PyExplainer achieves a

median Euclidean Distance of 492, while LIME achieves a

median Euclidean Distance 839. For Qt, we find that our

PyExplainer achieves a median Euclidean Distance of 492,

while LIME achieves a median Euclidean Distance 1,825. The

Wilcoxon signed-ranked test confirms that the distributions

of the Euclidean Distance of our PyExplainer is statistically

significantly smaller than LIME (p-value < 0.05) with a large

Cliff’s |δ| effect size for both classifiers and both projects.

This finding indicates that our PyExplainer produces syn-

thetic neighbors that are more closely similar to an instance

to be explained than LIME. The less similarity of synthetic

neighbors generated by LIME has to do with the use of random

perturbation approach. The random perturbation approach per-
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Fig. 4: (RQ2) The accuracy of the local models produced by

our PyExplainer and LIME in terms of AUC and F1.

turbs an instance to be explained by adding a value randomly

drawn from a normal distribution. However, such a simple

random perturbation approach is not suitable for sparse and

high dimensional data like JIT datasets [52]. In particular,

the random perturbation approach does not account for the

characteristics of the actual JIT datasets. Thus, we found that

the random perturbation approach often generates synthetic

neighbors that are less similar to an instance to be explained

than our PyExplainer. On the other hand, our PyExplainer

generates synthetic neighbors based on the characteristics

of JIT dataset using the crossover and mutation operations,

producing a more accurate explanation for the predictions of

JIT defect models.

(RQ2) Does our PyExplainer produce higher accuracy of
local models than LIME for JIT defect models?

Approach. To address RQ2, we analyze the accuracy of

the local models generated by PyExplainer and LIME. The

accuracy of local models indicates how well local models

can approximate (or mimic) the logic of the global models.

To do so, we first obtain the predicted class (i.e., CLEAN

and DEFECT) of the synthetic instances from the global JIT

defect models. Then, we obtain the probability of CLEAN and

DEFECT class of synthetic instances from the local models.

Then, we evaluate the accuracy of the predictions between the

local models and the global JIT model using two traditional

performance measures, i.e., Area Under the ROC Curve (AUC)

and F1. Similar to RQ1, we apply the Wilcoxon signed-rank

test and the Cliff’s |δ| effect size test to evaluate whether

the accuracy of local models of PyExplainer are statistically

significantly higher than LIME.

Results. PyExplainer produces local models that are 18%-

Fig. 5: (RQ2) The probability (y-axis) of synthetic instances

predicted by the local models of PyExplainer and LIME, when

comparing to the actual class of that instances (i.e., the legend

of defect and clean) from the RF and LR global JIT defect

models.

38% more accurate than the LIME’s local models. Figure 4

shows that the local models produced by our PyExplainer

achieve a median AUC of 0.99 when explaining the RF and

LR JIT defect models for both Openstack and Qt. On the other

hand, the local models produced by LIME achieves a median

AUC of 0.75 for Openstack and 0.72 for Qt when explaining

the RF JIT defect models, while achieving a median AUC

of 0.85 for Openstack and 0.82 for Qt when explaining the

LR JIT defect models. This indicates that our PyExplainer

produces local models that are 32%-38% and 18%-24% more

accurate (AUC) than LIME for both RF and LR JIT defect

models. Finally, we observe a similar conclusion when using

F-measure, i.e., PyExplainer produces local models that are

242.86%-413.5% and 23.46%-29.87% more accurate (F1) than

LIME for both RF and LR JIT defect models. The Wilcoxon

signed-ranked test confirms that the accuracy of local mod-

els produced by our PyExplainer is statistically significantly

higher than the accuracy of local models produced by LIME

(p-value < 0.05) with a large Cliff’s |δ| effect size.

The more accurate local models (i.e., high AUC) produced

by our PyExplainer have to do with the quality of synthetic

neighbors generated by our PyExplainer. First, our PyEx-

plainer uses crossover and mutation techniques to generate

synthetic neighbors. Thus, the synthetic neighbors are more

closely similar to an instance to be explained and more similar

to the actual characteristics of defect-introducing commits and

clean commits from the training data. Therefore, we perform

a deeper investigation to better understand the distribution

of the probability of synthetic neighbours generated by the
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Instance to be explained
Generated instances

Global model

Training data

Neighborhood

LIME produces 
(RQ1) less similar synthetic neighbors; and 

 (RQ2) a less accurate local model.

PyExplainer produces 
(RQ1) more similar synthetic neighbors; and 

 (RQ2) a more accurate local model.

Fig. 6: The characteristics of synthetic neighbors generated by

PyExplainer and LIME.

PyExplainer and LIME local models. Figure 5 shows that the

median probability of defect class (0.98-1.00) and clean class

(0.00-0.04) generated by the PyExplainer local models differs

by 0.96-0.98. On the other hand, the median probability of

defect (0.39-0.63) and clean (0.28-0.47) classes generated by

the LIME local models differs by 0.11-0.16. This findings

indicates that the PyExplainer local models have a higher

ability to discriminate the characteristics between DEFECT

and CLEAN classes, producing higher AUC than the LIME

local models.

Finally, we illustrate the characteristics of synthetic neigh-

bors generated by PyExplainer and LIME in Figure 6. In

RQ1, the smaller Euclidean Distance by PyExplainer indicates

that PyExplainer produces synthetic neighbors that are more

similar to (1) an instance to be explained; and (2) the actual

characteristics of the JIT defect datasets due to the use of

crossover and mutation operations on training data. In RQ2,

the higher AUC and F1 by PyExplainer indicates that our

PyExplainer produces better synthetic neighbors, leading to

more accurate local models than LIME. Therefore, the expla-

nation generated by PyExplainer is more closely similar to the

explanation of an instance to be explained than the explanation

generated by LIME.

(RQ3) Is our PyExplainer more effective in generating
explanations than LIME for JIT defect models?

Approach. To address RQ3, we analyze the explanations

produced by PyExplainer and LIME using the two measures.

• %Unique measures the percentage of unique explanations

generated by each technique. The higher percentage of

unique explanations indicates that a model-agnostic tech-

nique can effectively generate a more specific (i.e., less

duplicate) explanation to the instance to be explained.

• %Consistency measures the percentage of the defect-

introducing commits in the testing data that have char-

acteristics satisfying the rule feature in the generated

explanation. The higher percentage of the consistency

indicates that a model-agnostic technique can effectively

generate an explanation that is consistent with the actual

characteristics of defect-introducing commits.
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Fig. 7: (RQ3) The percentage of the defect-introducing com-

mits in the testing data that are consistent with the generated

explanation.

Results. The explanations generated by our PyExplainer
are 69%-98% more unique (i.e., more specific to an
instance to be explained) than LIME. We find that Py-

Explainer can produce 100% unique explanations for all of

the instances to be explained for both studied datasets. On

the other hand, LIME can produce as few as 2%-4% unique

explanations for OpenStack and 3%-31% unique explanations

for Qt. In other words, for OpenStack, we find that as much

as 72%-86% of defect-introducing commits have the same

explanation, despite having different characteristics of the

feature values. Similarly, for Qt, we find that as much as 53%-

74% of commits have the same explanation, despite having

different characteristics of the testing instances. Thus, the less

duplicate explanations generated by PyExplainer indicates that

PyExplainer can generate explanations that are more specific

to an instance to be explained rather than LIME.

The explanations generated by our PyExplainer are
17%-54% more consistent with the actual defect-
introducing commits in the testing data than LIME.
Figure 7 shows that PyExplainer achieves a median con-

sistency of 73%-75% for OpenStack and 72%-73% for Qt.

On the other hand, we find that LIME achieves a median

consistency of 54% for OpenStack and 18%-56% for Qt. The

experiment result indicates that the explanations generated by

our PyExplainer are 19%-21% and 17%-54% more consistent

with the actual defect-introducing commits in the testing data

than LIME for OpenStack and Qt, respectively. The Wilcoxon

signed-ranked test confirms that the percentage consistency

value of PyExplainer is statistically significantly higher than

LIME (p-value < 0.05) with a large Cliff’s |δ| effect size for

both JIT defect models and both studied datasets.

VI. DISCUSSION

In this section, we first discuss the usage scenario of how

PyExplainer can be used in practice. Then, we present an

analysis of the What-If simulation when the explanations were
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considered (i.e., what if we change this, would it reverse the

predictions of the JIT defect models?). Finally, we describe the

implementation details of the PyExplainer Python package.

A. A Usage Scenario

Let’s consider Bob as a developer in a large-scale software

project that adopts modern code review practices. Bob has

his main responsibility to inspect commits that are submitted

by other developers to ensure the quality of commits prior to

integration into the release branch. Suppose that on average

Bob spends one hour to review one commit. Hence, with

his average 8 working hours per day, he can review only

8 commits per day. Given a huge number of newly arrived

commits everyday (e.g., 100 commits per day), Bob does not

know which commits should be reviewed first. With the use

of JIT model, the list of commits can be prioritized based

on the likelihood of being defect-introducing provided by the

JIT defect model so that Bob can efficiently spend his limited

time on the most risky commits. However, Bob still may not

be convinced by the predictions of JIT defect models, since

he does not understand why a commit is predicted as defect-
introducing. Thus, Bob may not trust the JIT defect models and

may decide to ignore the predictions, resulting in suboptimal

SQA resource allocation and prioritization.

With PyExplainer, Bob now better understands why a

commit is predicted as defect-introducing since PyExplainer

provides an explanation (i.e., which feature is the most impor-

tant for a given prediction). For example, PyExplainer provides

an explanation (e.g., Churn > 100 ⇒ Defect) that a commit

is predicted as defect-introducing because the churn size is

greater than 100. This kind of explanation could help Bob to

focus on the most important aspects that are associated with

the risk of being defect-introducing (i.e., considering reducing

the churn size of the commit), instead of focusing on the less

important aspects (e.g., inviting more reviewers). However,

it remains challenging for Bob to consider which value of

a feature that should be changed to mitigate the risk. In

particular, given an explanation (e.g., Churn > 100 ⇒ Defect),

Bob still does not know how small a Churn value should be

that could reverse the prediction of JIT models from DEFECT

to CLEAN. Thus, an interactive what-if visualization tool is

needed to help Bob making better decisions of how much the

Churn value that should be changed.

B. What-If Analysis

We conducted a what-if simulation based on a hypothetical

scenario if the explanations of our PyExplainer were consid-

ered. In particular, we investigated what if we change the value

of a feature guided by the explanation, would it reverse the pre-

diction of the JIT defect model?. For example, an explanation

(Churn>100 ⇒ DEFECT) generated by PyExplainer means

that a commit is predicted as defect-introducing since Churn

is greater than 100. Thus, what if Churn was less than 100,

would the prediction be reversed from DEFECT to CLEAN.

To conduct this what-if simulation, we first generate a simu-

lated instance. The simulated instance is an instance where the

84%

69%
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(a) The percentage of the sim-
ulated instances that can reverse
the prediction from DEFECT to
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(b) The difference between the
probability of the original in-
stance and the probability of the
simulated instance.

Fig. 8: The results of the what-if analysis.

actual value of a feature guided by the rule-based explanation

was changed in the opposite direction of the comparison op-

erator of the explanation (i.e., decrease for >, increase for <)

by one SD (a standard deviation of that feature in the training

data) from the rule threshold. According to the above example,

the simulated instance is the modified original instance where

the actual value of a feature (e.g., Churn=120) guided by

the rule-based explanation (Churn>100 ⇒ DEFECT) was

changed in the opposite direction of the comparison operator

of the explanation (i.e., decrease for >) by one SD (e.g., 20)

from the rule threshold (100). Thus, the Churn value of the

simulated instance is 80 (i.e., 100-20). Then, we input this

simulated instance to the global JIT defect model and analyze

whether the simulated instance could reverse the predictions

of the global JIT defect models.

We perform this what-if simulation for all the explanations

generated by our PyExplainer for all of the commits in the test-

ing dataset that are correctly predicted as defect-introducing by

the JIT defect models. Then, we measure (1) %reversed, i.e.,

the percentage of the simulated instances that can reverse the

prediction from DEFECT to CLEAN; and (2) %prob diff, i.e.,

the difference between the probability of the original instance

and the probability of the simulated instance.

Figure 8a shows that, when considering the explanations

guided by our PyExplainer, 84% (RF) and 67%-69% (LR)

of the simulated instances that can reverse the prediction

from DEFECT to CLEAN of the global JIT defect models.

Furthermore, Figure 8b also shows that, after considering the

explanations guided by our PyExplainer, the probability of the

simulated instance is decreased by 30% for the RF models

and 22% - 28% for the LR models when comparing to the

probability of the original instance. This simulation highlights

the importance of our PyExplainer for helping practitioners to

focus on the most important aspects that are associated with

the risk of being defect-introducing for a given commit, instead

of focusing on the less important aspects. Nevertheless, the one

SD used in this what-if simulations is just an example, the

actual changed value should be subject to the domain experts.
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Why this commit is predicted as defect-introducing?
#1 The value of LinesAdded is more than 155

Actual = 155

0 45040035030025020015010050

0 20181412108642 16

0 1097654321 8

#2 The value of ReviewRevisions is less than 12
Actual = 12

#3 The value of Reviewers is less than 3
Actual = 3

#1 The value of LinesAdded is more than 155

#2 The value of ReviewRevisions is less than 12

#3 The value of Reviewers is less than 3

155

12

3

Risk Score: 94%

(a) The visual explanation of the original instance (predicted as
DEFECT with a risk score of 98%).

Why this commit is predicted as defect-introducing?
#1 The value of LinesAdded is more than 155

Actual = 155

45040035030025020015010050

20181412108642 16

1097654321 8

#2 The value of ReviewRevisions is less than 12
Actual = 12

#3 The value of Reviewers is less than 3
Actual = 3

#1 The value of LinesAdded is more than 155

#2 The value of ReviewRevisions is less than 12

#3 The value of Reviewers is less than 3

50

14

2

Risk Score: 28%

0
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0

(b) The visual explanation of the simulated instance when changing
the feature values (predicted as CLEAN with a risk score of 28%).

Fig. 9: The proof-of-concept visualization of our PyExplainer consists of (1) the risk score (i.e., the probability of an instance

to be explained by the global JIT model); (2) the visual explanation (in the black border); and (3) the interactive what-if

visualization for our PyExplainer.

C. The PyExplainer Python package

To ease the adoption of our PyExplainer by practitioners and

to facilitate the replication of future research, we developed

the PyExplainer Python package. In our PyExplainer Python

package, we also developed a proof-of-concept of the visual

explanation and the interactive what-if visualization.

The visual explanation is developed to present the rule-

based explanation in a form of a bullet plot visualization

with textual explanations. Figure 9a shows an example of the

visual explanation of an OpenStack commit (a9a59cc). Our

visual explanation is designed to provide the following key

information: (1) textual descriptions that explain why a commit

is predicted as defect-introducing; (2) the actual feature values

of the commit (i.e., the vertical black bars); and (3) the

range of feature values associated with the risk score (i.e.,

the predicted probability). The green shades indicate the non-

risky range values of a feature, while the red shades indicate

the risky range values of a feature.

An interactive what-if visualization is developed to help

practitioners interactively change the value of a feature, while

immediately generating the new estimated risk score (i.e.,

the probability obtained from the JIT defect model). This

visualization will allow practitioners to explore different values

of a feature prior to making a decision.

Figure 9b shows an example of an interactive what-if visu-

alization for an OpenStack commit (a9a59cc). Through the

visualization, the user can change the value of the feature (e.g.,

changing the value of Lines Added from 155 to 50, the value

of Review Revisions from 12 to 14, and the value of Reviewers
from 3 to 2). Then, the visualization will responsively update

the predicted probability generated by the JIT defect model

(e.g., from 94% to 28%).

D. Implications to Practitioners and Researchers

The contributions of this paper build an important step

towards a new research area of Explainable AI for SE, by

making the predictions of just-in-time defect models more

explainable and actionable. A lack of explainability and ac-

tionability of software analytics has been raised by both

practitioners [5, 14, 25] and researchers [3, 13, 21, 29, 31, 50].

For example, Rajapaksha et al. [31] proposed an approach to

generate actionable suggestions (i.e., counterfactual explana-

tions) for file-level defect prediction. Peng and Menzies [29]

also proposed a TimeLIME approach (an extension of LIME

model-agnostic technique) to generate actionable suggestions

(i.e., defect reduction plans). However, the approaches of

both Rajapaksha et al. [31] and Peng and Menzies [29] are

designed for release-based defect prediction, which require

multiple releases for training and evaluation. Thus, they are

not applicable to JIT defect prediction models. On the other

hand, our results show that our PyExplainer is more effective

in generating explanations than LIME for the predictions of

JIT defect models, while providing an interactive what-if

visualization so practitioners can make better data-informed

decisions. Similar effort to other state-of-the-art model agnos-

tic techniques (e.g., LIME [32]), we make our PyExplainer

Python package publicly-available to ease the adoption by

practitioners and researchers.

E. Threats to Validity

Threats to construct validity relates to the hyperparameter

settings of RandomForest, SMOTE, and LIME techniques

when conducting our experiment [39, 42, 44]. To ensure the

reprehensibility, the used parameter setting of such techniques

are reported in the replication package in our GitHub reposi-

tory (the replication-package branch).

Threats to internal validity relates to the randomization of

our PyExplainer (i.e., the neighbour generation process). To

mitigate any conclusion instability threat, we chose to generate

2,000 neighbours. After we repeated the experiment five times,

the conclusion of our paper remains the same. Nevertheless,

future work can explore what would be the minimum synthetic

neighbours that can produce stable local explanations (i.e., the

same local explanations when they are regenerated).

Threats to the external validity relates to the generalizability

of our PyExplainer approach. However, our experiment only

focused on the just-in-time defect prediction problem, with the

limited number of the studied classification techniques, and the

limited number of studied projects. Thus, other classification

techniques and other projects should be explore in future work.
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VII. CONCLUSION

Prior studies proposed Just-In-Time (JIT) defect prediction,

yet its explanability remains largely unexplored (i.e., practi-

tioners still do not know why a commit is predicted as defect-

introducing). In this paper, we propose PyExplainer, a novel

local rule-based model-agnostic technique for explaining the

predictions of JIT defect models. Through a case study of two

open-source software projects, we find that our PyExplainer

produces: (1) synthetic neighbours that are 41%-45% more

similar to an instance to be explained; (2) 18%-38% more

accurate local models; and (3) explanations that are 69%-98%

more unique and 17%-54% more consistent with the actual

characteristics of defect-introducing commits in the future than

LIME (a state-of-the-art model-agnostic technique).

PyExplainer is designed for explaining the predictions of

any classification problems. Future work should explore if our

PyExplainer can be used to effectively explain the predictions

of other classification problems (e.g., vulnerability prediction,

code smell detection) in software engineering.

Publishing the PyExplainer Python Package. To ease the

adoption of our PyExplainer by practitioners and to facilitate

the replication of future research, the PyExplainer package

is available in both conda and pip (Package Installer for

Python). Our PyExplainer Python package also has a code

coverage of 93% measured by CodeCov with an A+ quality

graded by LGTM.g yy

VIII. A TUTORIAL OF THE PYEXPLAINER PACKAGE.

Below, we present a tutorial of how to use the PyExplainer

Python package step-by-step using Code Block 1.

(Step 1) The PyExplainer package is installed using pip

(Python Package Management system).

(Step 2) The PyExplainer package is imported.

(Step 3) The data for demonstration is obtained from

PyExplainer package. The data is composed of X_train,

y_train, indep, dep, blackbox_model, X_explain,

y_explain. The X_train variables are used to gen-

erate neighborhood instances. The indep and dep vari-

ables specify the feature names and label, respectively. The

blackbox_model is the global JIT defect models from

Scikit-learn module. The X_explain represents an instance

to be explained while the y_explain is the label of the

instance to be explained.

(Step 4) A PyExplainer object is created and an explanation

is obtained from the explain function.

(Step 5) The visual explanation and the what-if visualiza-

tion are generated by the visualise function.
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1 # step 1 - install the pyexplainer package
2 !pip install pyexplainer
3 # step 2 - import necessary libraries
4 from pyexplainer.pyexplainer_pyexplainer import

PyExplainer as pyexp
5 from pyexplainer import pyexplainer_pyexplainer
6 # step 3 - get the preprocessed data and global

model to be tuned in to the PyExplainer object
7 dflt = pyexplainer_pyexplainer.get_dflt()
8 # step 4 - create a PyExplainer object using the

preprocessed data and model, and generate rules
by utilising the built-in local model in
PyExplainer

9 exp = pyexp(X_train=dflt[’X_train’],
10 y_train=dflt[’y_train’],
11 indep=dflt[’indep’],
12 dep=dflt[’dep’],
13 blackbox_model=dflt[’blackbox_model’])
14 rules = exp.explain(X_explain=dflt[’X_explain’],
15 y_explain=dflt[’y_explain’])
16 # step 5 - visualise the rules generated by the

local model and the prediction generated by the
global model

17 exp.visualise(rules)

Code Block 1: An Example Tutorial of the PyExplainer Python

package.
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