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ABSTRACT

Software vulnerabilities are prevalent in software systems, caus-

ing a variety of problems including deadlock, information loss, or

system failures. Thus, early predictions of software vulnerabilities

are critically important in safety-critical software systems. Various

ML/DL-based approaches have been proposed to predict vulnerabil-

ities at the file/function/method level. Recently, IVDetect (a graph-

based neural network) is proposed to predict vulnerabilities at the

function level. Yet, the IVDetect approach is still inaccurate and

coarse-grained. In this paper, we propose LineVul, a Transformer-

based line-level vulnerability prediction approach in order to ad-

dress several limitations of the state-of-the-art IVDetect approach.

Through an empirical evaluation of a large-scale real-world dataset

with 188k+ C/C++ functions, we show that LineVul achieves (1)

160%-379% higher F1-measure for function-level predictions; (2)

12%-25% higher Top-10 Accuracy for line-level predictions; and

(3) 29%-53% less Effort@20%Recall than the baseline approaches,

highlighting the significant advancement of LineVul towards more

accurate and more cost-effective line-level vulnerability predictions.

Our additional analysis also shows that our LineVul is also very

accurate (75%-100%) for predicting vulnerable functions affected

by the Top-25 most dangerous CWEs, highlighting the potential

impact of our LineVul in real-world usage scenarios.
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1 INTRODUCTION

Software vulnerabilities are weaknesses in an information system,

security procedures, internal controls, or implementations that

could be exploited or triggered by a threat source [26]. Those unre-

solved weaknesses associated with software systems may result in

extreme security or privacy risks. For instance, in 2021, a criminal

group leveraged the ProxyLogon flaw [8] to access highly confiden-

tial data of PC-maker Acer and issued an opening ransom demand of

$50 million USD [7]. The vulnerability was on Microsoft Exchange
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Server, that allowed an attacker to bypass the authentication and

impersonating. Therefore, an unauthenticated attacker could ex-

ecute arbitrary commands on the server. Cybersecurity Ventures

expects global cybercrime costs to reach $10.5 trillion USD by 2025,

up from $3 trillion USD in 2015 [4]. As cyberattacks become the

main contributing factors to revenue loss of some businesses [10],

ensuring the safety of software systems becomes one of the critical

challenges of private and public sectors.

To mitigate this challenge, program analysis (PA) tools [1, 2, 5, 9]

have been introduced to analyze source code using predefined

vulnerability patterns. For instance, Gupta et al. [19] found that

there are static analysis approaches that were used to detect SQL

injection and cross-site scripting vulnerabilities. Both PA-based

and ML/DL-based approaches fall short of the capability to detect

fine-grained vulnerabilities.” – PA tools, including ones cited in the

paper, highlight the specific lines in code that contain the detected

vulnerabilities.

On the other hand, Machine Learning (ML) / Deep Learning (DL)

approaches have been proposed. Specifically, these ML/DL-based

approaches [12, 32, 33, 43, 65] first generate a representation of

source code in order to learn vulnerability patterns. Finally, such

approaches will learn the relationship between the representation

of source code and the ground-truth (i.e., whether a given piece of

code is vulnerable). Despite the advantages of dynamically learn-

ing the vulnerability patterns without manual predefined vulner-

ability patterns, previous ML/DL-based approaches still focus on

coarse-grained vulnerability prediction where models only point

out vulnerabilities at the file level or the function level—which is

still coarse-grained.

Recently, Li et al. [30] proposed an IVDetect approach to address

the need of fine-grained vulnerability prediction. IVDetect lever-

ages a FA-GCN (i.e., Feature-attention Graph Convolution Network)

approach to predict function-level vulnerabilities and a GNNEx-

plainer to locate the fine-grained location of vulnerabilities. Li et

al. [30] found that the IVDetect approach achieves a F-measure of

0.35, which outperforms the state-of-the-art approaches. However,

IVDetect has the following three limitations.

• First, the training process of IVDetect is limited to

project-specific dataset. Due to the limited amount of

training data used by IVDetect, the language models may not

be able to capture the most accurate relationship between

tokens and their surrounding tokens. Thus, the vectors rep-

resentation of source code by IVDetect are still suboptimal.

• Second, the RNN-based architecture of the IVDetect

approach is still not effective to capture the meaning-

ful long-term dependencies and semantics of source

code. IVDetect relies on RNN-based models to generate vec-

tor representations to be used by its graph model during the
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prediction step. However, RNN-basedmodels often have diffi-

culties in learning the long sequence of source code. Such the

limitation could make the generated vector representations

less meaningful, resulting in inaccurate predictions.

• Third, the sub-graph interpretation of IVDetect is still

coarse-grained. IVDetect leveraged a GNNExplainer to

identify which sub-graph contributed the most to the pre-

dictions. Although such sub-graph interpretation can help

developers narrow down to locate vulnerable lines, such

sub-graphs still contain many lines of code. Thus, security

analysts still need to manually locate which lines of these

sub-graphs are actually vulnerable.

In this paper, we propose LineVul, a Transformer-based fine-

grained vulnerability prediction approach to address the three im-

portant limitations of IVDetect. First, instead of using RNN-based

models to generate representation of code, we leverage a BERT

architecture [15] with self-attention layers that are capable of cap-

turing long term dependencies within a long sequence using dot-

product operations. Second, instead of using project-specific train-

ing data, we leverage a CodeBERT pre-trained language model to

generate vector representation of source code. Third, instead of

using a GNNExplainer to identify sub-graphs that contribute to

the predictions, we leverage the attention mechanism of the BERT

architecture to locate vulnerable lines, which is finer-grained than

the IVDetect approach. Finally, we conduct an experiment to com-

pare our LineVul approach with seven baseline approaches (i.e.,

IVDetect [30], Reveal [12], SySeVR [32], Devign [65], Russell et

al. [43], VulDeePecker [33], and BoW+RF), and evaluated on both

coarse-grained (i.e., function-level) and fine-grained (i.e., line-level)

vulnerability prediction scenarios. Through an extensive evalua-

tion of our approach on 188k+ C functions including 91 different

types of CWEs (Common Weakness Enumeration), we answer the

following three research questions:

(RQ1) How accurate is our LineVul for function-level vul-

nerability predictions?

Results. Our LineVul achieves an F-measure of 0.91, which

is 160%-379% better than the state-of-the-art approaches

with a median improvement of 250%. Similarly, our Line-

Vul achieves a Precision of 0.97 and a Recall of 0.86, which

outperform the baseline approaches by 322% and 19%, re-

spectively.

(RQ2) How accurate is our LineVul for line-level vulnerabil-

ity localization?

Results. Our LineVul achieves a Top-10 Accuracy of 0.65,

which is 12%-25% more accurate than the other baseline ap-

proaches. In addition, LineVul achieves the lowest median

IFA of 1, while the baseline approaches achieve a median IFA

of 3-4.

(RQ3) What is the cost-effectiveness of our LineVul for line-

level vulnerability localization?

Results. Our LineVul achieves the lowest Effort@20%Recall

of 0.75, which is 29%-53% less than other baseline approaches.

In addition, LineVul achieves the highest Recall@1%LOC

of 0.24, which is 26%-85% higher than other baseline ap-

proaches.

These results lead us to conclude that LineVul is more accu-

rate, more cost-effective, and more fine-grained than existing vul-

nerability prediction approaches. Thus, we expect that our Line-

Vul may help security analysts to find vulnerable lines in a cost-

effective manner. In addition, we recommend the attention mech-

anism be used in future research to improve the explainability of

the Transformer-based models, since this paper has shown the sub-

stantial benefits of using the attention mechanism for line-level

vulnerability localization, which outperforms other model-agnostic

techniques (e.g., DeepLift, LIG, and SHAP).

Novelty & Contributions. To the best of our knowledge, the

main contribution of this paper is as follows: (1) our LineVul,

a Transformer-based line-level vulnerability prediction approach,

which address various limitations of existing vulnerability pre-

diction approaches; and (2) the experimental results confirm that

our LineVul is more accurate, more cost-effective, and more fine-

grained than existing vulnerability prediction approaches.

Open Science. To support the open science community, we

publish the studied dataset, scripts (i.e., data processing, model

training, and model evaluation), and experimental results in GitHub

(https://github.com/awsm-research/LineVul).

Paper Organization. Section 2 discusses the IVDetect approach

and its limitations. Section 3 presents our LineVul approach. Sec-

tion 4 presents the motivation of our three research questions,

our studied datasets, and our experimental setup, while Section 5

presents the experimental results. Section 6 presents the ablation

study of our LineVul. Section 8 discloses the threats to validity.

Section 9 draws the conclusions.

2 BACKGROUND

A software vulnerability is a defect or a weakness in software

implementation due to the way the software is designed or the

way the software is coded. In computer security, such software

vulnerabilities could lead to inner system crash or allow an attacker

to gain control of a system by crossing privilege boundaries within

a computer system. Thus, two types of automated vulnerability

prediction approaches, Program Analysis (PA)-based and ML/DL-

based, have been proposed to early predict software vulnerabilities.

PA-based techniques use pre-defined patterns to detect software

vulnerabilities. Hence, PA-based methods only focus on specific

types of vulnerabilities. For instance, the FlawFinder [5] supports

common weakness enumeration (CWE), which takes C/C++ pro-

gram as input and generates a list of vulnerabilities sorted by risk

level. RATS [9] is another static program analysis tool, which can

detect the vulnerabilities such as buffer overflows and TOCTOU

(Time of Check, Time of Use) race conditions. Cppcheck [2] is a

static analysis tool for C/C++ code using unique code analysis and

focuses on detecting undefined behaviour and dangerous coding

constructs. Checkmarx [1] provides automatic scans of uncompiled

source code that can be integrated into DevOps, enabling developers

to identify security vulnerabilities during development. However,

such the pre-defined patterns for PA-based techniques need to be

manually crafted by security experts, which are time-consuming.

ML/DL-based approaches leverage Machine Learning (ML) and

Deep Learning (DL) techniques to automatically learn vulnerability
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patterns to detect software vulnerabilities. Specifically, code pro-

grams are transformed into vector representation for the model

to learn the implicit patterns of vulnerabilities from prior vulner-

able programs. Recently, several DL models have been applied

to vulnerability prediction tasks. For instance, VulDeePecker [33]

leverages symbolic representations on program slices, Devign [65]

uses graph embedding on code property graphs (i.e., AST, CFG,

DFG), SySeVR [32] relies on semantic information induced by data

dependency, Reveal [12] adopted graph embedding with triplet loss

function for representation learning, Russell et al. [43] leverages

CNNs and RNNs to extract representation. Despite these DL mod-

els are able to generate better representation, they still focus on

coarse-grained vulnerability prediction that provides vulnerability

prediction at the file level or the function level.

2.1 IVDetect: A state-of-the-art fine-grained
vulnerability prediction & Limitations

Both PA-based and ML/DL-based approaches fall short of the capa-

bility to detect fine-grained vulnerabilities. Therefore, developers

would still need to inspect many lines of code to look for and fix

the vulnerabilities in their code. Recently, Li et al. [30] proposed

IVDetect—a fine-grained graph-based vulnerability prediction ap-

proach, which consists of three steps:

Step 1: CodeRepresentation Learning. IVDetect leverages the

GloVe word embedding (Global Vectors for Word Representation)

to capture semantic similarity among tokens and a GRU model to

summarize the sequence of vectors into one feature vector. IVDetect

generates four feature vectors from the given code statement: 1) a

sequence of sub-tokens to capture lexical information, 2) variable

names and types to be used as node information in graph model,

3) data dependency context, and 4) control dependency context.

In addition, a Tree-LSTM is used to generate the representation

for AST trees. After obtaining all of the five feature vectors (i.e.,

𝐹1, ..., 𝐹5), IVDetect uses a Bi-GRU and an attention layer to learn

the weight vector𝑊𝑖 for each feature vector 𝐹𝑖 . Finally, each feature

vector is multiplied by the computed weight vector: 𝐹 ′𝑖 =𝑊𝑖𝐹𝑖 .

Step 2: Vulnerability Prediction with FA-GCN. Given an

input method 𝑚, IVDetect first processes 𝑚 into a program de-

pendency graph (PDG) consisting of many statements, for each

statement, the five feature vectors will be generated through the

process discussed in Step 1. FA-GCN performs sliding a small win-

dow along all the nodes (statements) of the PDG and leverages a

joint layer to link all generated feature vectors into a feature matrix

F𝑚 where each row corresponds to a small window in PDG. Then,

the symmetric normalized Laplacian matrix [29] L𝑚 is calculated

and combined with feature matrix F𝑚 through the convolution to

generate the representation matrixM𝑚 for the method𝑚. Finally,

FA-GCN uses a spatial pyramid pooling layer for normalization

purpose followed by a fully connected layer to transform matrix

M𝑚 into vector 𝑉𝑚 and performs classification using two hidden

layers and a softmax function to produce a prediction score for𝑚.

The scores are used as vulnerability scores to rank the functions.

Step 3: Fine-grained Vulnerability Prediction by GNNEx-

plainer. IVDetect leverages GNNExplainer [64] with a masking

technique to explain which sub-graphs contribute the most to the

Figure 1: A motivating example of our LineVul vs IVDetect.

vulnerability predictions from the FA-GCN model. The goal of GN-

NExplainer is to find out a sub-graph G𝑚 from the whole PDG 𝐺𝑚
of the method𝑚 that minimizes the difference in the prediction

scores between using the entire graph𝐺𝑚 and using the minimal

graph G𝑚 . To do so, GNNExplainer learns the set of edge-mask 𝐸𝑀

that derives the minimal graph G𝑚 . As an 𝐸𝑀 is applied, GNNEx-

plainer checks if the FA-GCN model produces the same result (i.e.,

predicted as vulnerable). If yes, the edge in the edge-mask is not

important and not included in G𝑚 . Otherwise, the edge is impor-

tant and included in G𝑚 . IVDetect then utilizes the best sub-graph

G𝑚 learnt from GNNExplainer as an interpretation for the given

function to detect fine-grained vulnerabilities. However, there exist

the following limitations.

Limitation 1 : The training process of IVDetect is limited

to project-specific dataset. The quality of vector representation

heavily relies on the language models of code being used. For the

IVDetect approach, Li et al. [30] leveraged a GloVE (see Step 1 of

IVDetect), which is an unsupervised learning algorithm for ob-

taining vector representations of words. However, their Glove lan-

guage models are trained on the project-specific dataset without

pre-training on large code base, which may not be able to generate

the most meaningful code representation. Thus, the suboptimal

vector representation of source code by IVDetect may lead to inac-

curate predictions.

Limitation 2 : The RNN-based architecture of the IVDetect

approach is still not effective to capture the meaningful long-

term dependencies and semantics of source code. IVDetect

relies on RNN-based architectures to generate code representation

in Step 1, which will encounter problems when processing a long

sequence. RNN-based models process a sequence token by token,

where the models consider a context vector and a hidden vector of

the last token when processing each token. The hidden vector is

used to capture short-term dependencies between tokens while the

context vector is used for long-term dependencies. However, the

context vector has problems capturing adequate long-term depen-

dencies given a long sequence (e.g., a sequence of 500 tokens) due to

its limited memory. Thus, this limitation could make the generated

feature representations less meaningful, which further negatively

impact the accuracy of the vulnerability prediction models.
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Limitation 3 : The sub-graph interpretation of IVDetect is

still coarse-grained. Third, in Step 3, IVDetect leverages GNNEx-

plainer to generate PDG sub-graph interpretations as fine-grained

vulnerability predictions. Such sub-graph interpretations could con-

sist of multiple lines of code, and they are not fine enough to ef-

fectively reduce the manual code inspection effort. For instance

in Figure 1, the vulnerable function 𝑢𝑛𝑃𝑟𝑒𝑚𝑢𝑙𝑆𝑘𝐼𝑚𝑎𝑔𝑒𝑇𝑜𝑃𝑟𝑒𝑚𝑢𝑙

contains a vulnerable line (i.e., the ninth line) in which the variable

type was wrongly defined and further caused a vulnerable type of

CWE-787 [3]. IVDetect generated a PDG sub-graph using IVDe-

tect, which pointed out the fifth, seventh, eighth, and ninth line

as a vulnerable pattern. On the other hand, our LineVul gener-

ated a line-level interpretation, which directly pinpoint the actual

vulnerable line.

3 LINEVUL: A LINE-LEVEL VULNERABILITY
PREDICTION APPROACH

In this section, we present the design rationale and the architecture

of our LineVul approach.

Design Rationale. To address the three key limitations of IVDe-

tect, we propose the architecture of our LineVul, a Transformer-

based line-level vulnerability prediction approach. First, instead

of using RNN-based models to generate representation of code,

we leverage BERT architecture [15] with self-attention layers that

are capable of capturing long term dependencies within a long

sequence using dot-product operations. Second, instead of using

project-specific training data, we leverage a CodeBERT pre-trained

language model to generate vector representation of source code.

The pre-trained CodeBERT language model was pre-trained on

20GB of code corpus (i.e., CodeSearchNet) using a Robustly Opti-

mized BERT pre-training approach [34]. Therefore, our approach

is able to capture more lexical and logical semantics for the given

code input and generate a more meaningful vector representation.

Third, instead of using a GNNExplainer to identify sub-graphs that

contribute to the predictions, we leverage the attention mecha-

nism of the BERT architecture to locate vulnerable lines, which is

finer-grained than the IVDetect approach.

We design our LineVul approach as a two-step approach: to

predict vulnerable functions and to locate vulnerable lines. Figure 2

presents an overview architecture of our LineVul approach.

3.1 Function-level Vulnerability Prediction

The function-level vulnerability prediction consists of 2 main steps:

1 BPE Subword Tokenization. In Step 1 , we leverage the

Byte Pair Encoding (BPE) approach [44] to build our tokenizer

with two main steps. 1a generating merge operations to deter-

mine how a word should be split, and 1b applying merge oper-

ations based on the subword vocabularies. Specifically, BPE will

split all words into sequences of characters and identify the most

frequent symbol pair (e.g., the pair of two consecutive characters)

that should be merged into a new symbol. BPE is an algorithm that

will split rare words into meaningful subwords and preserve the

common words (i.e., will not split the common words into smaller

subwords) at the same time. For instance in Figure 1, the function

name, 𝑢𝑛𝑃𝑟𝑒𝑚𝑢𝑙𝑆𝑘𝐼𝑚𝑎𝑔𝑒𝑇𝑜𝑃𝑟𝑒𝑚𝑢𝑙 , will be split into a list of sub-

words, i.e., ["un", "Prem", "ul", "Sk", "Image", "To", "Prem", "ul"]. The

common word "Image" was preserved and other rare words were

split. The use of BPE subword tokenization will help reduce the vo-

cabulary size when tokenizing various of function names because it

will split rare function name into multiple subcomponents instead

of adding the full function name into dictionary directly. In this

paper, we apply BPE approach on the CodeSearchNet [20] corpus

to produce a subword tokenizer that is suitable for a pre-trained

language model of source code corpus.

2 LineVul Model Building. In Step 2 , we build a Line-

Vul model based on the BERT architecture and leverage the initial

weights pre-trained by Feng et al. [17]. In Step 2a , LineVul per-

forms a word & positional encoding for the subword-tokenized

function in order to generate an embedding vector of each word

and its position in the function. Then, in Step 2b , the vector is

fed into the BERT architecture, which is a stack of 12 Transformer

encoder blocks. Each encoder consists of a multi-head self-attention

layer and a fully connected feed-forward neural network. Finally,

in Step 2c , the output vector is fed into a single linear layer in order

to perform binary classification for the given function. We describe

each step below.

2a Word & Positional Encoding. Source code consists of mul-

tiple tokens where the meaning of each token heavily relies on the

context (i.e., surrounding tokens) and its position of each token in

a function. Therefore, it is important to capture the code context

and its position within the function, especially, for function-level

vulnerability predictions. The purpose of this step is to generate

encoding vectors that capture the semantic meaning of code to-

kens and their positions in the input sequence. To do so, for each

subword-tokenized token, we generate two vectors: (1) a word en-

coding vector to represent the meaningful relationship between a

given code token and the other code tokens and (2) the positional

encoding vector to represent the position of a given token in the in-

put sequence. The token encoding vectors are generated according

to the word embedding matrix W
|𝑉 |×𝑑
𝑡𝑒 where |𝑉 | is the vocabulary

size and 𝑑 is an embedding size. The positional encoding vectors

are generated according to the positional embedding matrix W𝑐×𝑑
𝑝𝑒

where 𝑐 is the context size and 𝑑 is the embedding size. Finally, both

the word encoding vector and the positional encoding vector are

concatenated in order to produce input vectors of the Transformer

encoder blocks.

2b A Stack of 12 Transformer Encoders with Bidirectional

Self-attention. In this Step, the encoding vectors are fed into a

stack of 12 encoder-only Transformer blocks (i.e., the BERT ar-

chitecture [15]). Each encoder block consists of two components,

i.e., a bidirectional multi-head self-attention [15] layer and a fully-

connected feed-forward neural network. Below, we briefly describe

the multi-head self-attention and the feed-forward neural network.

The multi-head self-attention layer is used to compute an atten-

tion weight of each code token, that produces an attention vector.

The use of bidirectional self-attention allows every token to attend

context to its left and right. The generated attention weights are

used to indicate which code statements the Transformer model

should pay attention to. Generally, the self-attention mechanism

is used to obtain global dependencies where the attention weights

represent how each code token in the sequence is influenced by all

the other words in the sequence, allowing our LineVul approach to
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capture dependencies between every code token to generate more

meaningful representation.

The self-attention mechanism [59] employs a concept of infor-

mation retrieval, that computes the relevant scores of each code

token using the dot product operation where each token interacts

with other token once. The self-attention mechanism relies on three

main components, Query (𝑄), Key (𝐾 ), and Value (𝑉 ). The Query is

a representation of the current code token used to score against all

the other tokens based on their keys stored in the Key vectors. The

attention scores of each token are obtained by taking the dot prod-

uct between Query vectors and Key vectors. The attention scores

is then normalized to probabilities using the Softmax function in

order to get the attention weights. Finally, the Value vectors can be

updated by taking dot product between the Value vectors and the

attention weight vectors. The self-attention used in our LineVul is

a scaled dot-product self-attention, in which the attention scores

are divide by
√
𝑑𝑘 . The self-attention mechanism we adopted can

be summarized by the following equation:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉 .

To capture richer semantic meanings of the input sequence, we

used multi-head mechanism to realize the self-attention, which

allows themodel to jointly attend to information from different code

representation subspaces at different positions. For 𝑑-dimension 𝑄 ,

𝐾 , and 𝑉 , we split those vectors into ℎ heads where each head has
𝑑
ℎ
-dimension. After all of the self-attention operation, each head

will then be concatenated back again to feed into a fully-connected

feed-forward neural network including two linear transformations

with a ReLU activation in between. The multi-head mechanism can

be summarized by the following equation:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (head1, ..., headℎ)𝑊𝑂 ,

where ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑊
𝑄
𝑖 , 𝐾𝑊𝐾

𝑖 , 𝑉𝑊𝑉
𝑖 ) and𝑊𝑂 is used to

linearly project to the expected dimension after concatenation.

2c Single Linear Layer.Multiple linear transformations with

non-linear activation functions (i.e., ReLU) are built in the stacking

Transformer encoder blocks, therefore, the representation output by

the final encoder is meaningful. We only need a single linear layer

to map the code representation into binary label, i.e., 𝑦 =𝑊𝑇𝑋 + 𝑏.

3.2 Line-level Vulnerability Localization

Given a function predicted as vulnerable by LineVul, we perform a

line-level vulnerability localization by leveraging the self-attention

mechanism inside the Transformer architecture to locate the vul-

nerable lines. The intuition is that tokens that are most contributed

to the predictions are likely to be vulnerable tokens.

For each subword token in the function, in Step 3 , we summarize

the self-attention scores from each of the 12 Transformer encoder

blocks. After obtaining the attention subword-token scores, we then

integrate those scores into line scores. We split a whole function

into many lists of tokens (each list of tokens represents a line) by

the Newline control character (i.e., \n). Finally, for each list of token

scores, we summarize it into one attention line score and rank line

scores in a descending order.

4 EXPERIMENTAL DESIGN

In this section, we present the motivation of our three research

questions, our studied dataset, and our experimental setup.

4.1 Research Questions

To evaluate our LineVul approach, we formulate the following

three research questions.

(RQ1) How accurate is our LineVul for function-level vul-

nerability predictions? Recently, Li et al.[30] proposed IVDetect,

a state-of-the-art fine-grained vulnerability predictions approach.

However, as mentioned in Section 2.1, IVDetect has three key limi-

tations, leading to inaccurate and coarse-grained predictions. There-

fore, we propose our LineVul approach to address these challenges.

Thus, we investigate if the accuracy of our LineVul outperforms the

state-of-the-art function-level vulnerability prediction approaches.

(RQ2) How accurate is our LineVul for line-level vulnera-

bility localization? Line-level vulnerability prediction is needed

to help developers identify the fine-grained locations of vulnera-

ble lines, instead of wasting their time inspecting non-vulnerable

lines. Although IVDetect can identify the sub-graphs of a vulner-

able function, such sub-graphs still consist of many lines of code

that security analysts need to inspect, which is still coarse-grained.
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Thus, we investigate the accuracy of our LineVul for line-level

vulnerability predictions.

(RQ3) What is the cost-effectiveness of our LineVul for

line-level vulnerability localization? One of the primary objec-

tives of vulnerability prediction is to help security analysts locate

vulnerable lines in a cost-effective manner by uncovering the max-

imum number of vulnerabilities with the least amount of effort.

Thus, the amount of effort requires to inspect source code becomes

a critical concern when security analysts decide to deploy advanced

approaches in practice. Thus, we investigate the cost-effectiveness

of our LineVul for line-level vulnerability predictions.

4.2 Studied Dataset

We use the benchmark dataset provided by Fan et al. [16] due to the

following reasons. First is to establish a fair comparison with the

IVDetect approach. Seconds is to evaluate our line-level vulnerabil-

ity approach, since Fan et al. [16]’s dataset is the only vulnerability

dataset that provides line-level ground-truths (i.e., which lines in

a function are vulnerable). On the other hand, other existing vul-

nerability datasets (i.e., Devign [65], Reveal [12]) only provide the

ground-truths at the function level, but not the line level—which are

not suitable for our scope. The Fan et al.’s dataset is one of the largest

vulnerability datasets that includes line-level ground-truths. The

dataset is collected from 348 open-source Github projects, which

includes 91 different CWEs from 2002 to 2019, 188,636 C/C++ func-

tions with a ratio of vulnerability functions of 5.7% (i.e., 10,900

vulnerable functions), and 5,060,449 LOC with a ratio of vulnerable

lines of 0.88% (i.e., 44,603 vulnerable lines). Among the 10,900 vul-

nerable functions, the ratio of vulnerable lines varies from 2.5% (1st

quantile) - 20% (3rd quantile) with a median of 7%.

4.3 Experimental Setup

Data Splitting. Similar to Li et al. [30], we use the same data split-

ting approach, i.e., the whole dataset is split into 80% of training

data, 10% of validation data, and 10% of testing data.

Function-level Model Implementation.To implement our Line-

Vul approach for the function-level vulnerability prediction, we

mainly use two Python libraries, i.e., Transformers [62] and Py-

torch [13]. The Transformers library provides API access to the

transformer-based model architectures and the pre-trained weight,

while the PyTorch library supports the computation during the

training process (e.g., back-propagation and parameter optimiza-

tion). We download the CodeBERT tokenizer and CodeBERT model

pre-trained by Feng et al. [17]. We use our training dataset to fine-

tune the pre-trained model to get suitable weights for our vulner-

ability prediction task. The model was fine-tuned on an NVIDIA

RTX 3090 graphic card and the training time was around 7 hours

and 10 minutes. As shown in Equation 1, the Cross Entropy Loss

was used to update the model and optimize between the function-

level predicted values and the ground-truth labels, where 𝑥 is the

number of classes, 𝑝 is the ground truth probability distribution

(one-hot), and 𝑞 is the predicted probability distribution. To retrieve

the best fine-tuned weight, we used the validation set to monitor

the training process by epoch, and the best model was selected

based on the optimal F1-score against the validation set (not the

testing set).

𝐻 (𝑝, 𝑞) = −
∑

𝑥

𝑝 (𝑥) 𝑙𝑜𝑔𝑞 (𝑥) (1)

Line-level Model Implementation.To implement our LineVul ap-

proach for the line-level vulnerability prediction, we use the self-

attention matrix returned by the fine-tuned model during inference.

We summarize the dot product attention score for each token, hence,

every token has one attention score. We integrate tokens into lines

and summarized the score of each token to get the line scores. The

line scores are then used to prioritize the lines where a higher line

score represents that the line is likely to be a vulnerable line.

Hyper-Parameter Settings for Fine-tuning. For the model ar-

chitecture of our LineVul approach, we use the default setting of

CodeBERT, i.e., 12 Transformer Encoder blocks, 768 hidden size,

and 12 attention heads. We follow the same fine-tuning strategy

provided by Feng et al. [17]. During training, the learning rate is

set to 2e-5 with a linear schedule where the learning rate decays

linearly throughout the training process. We use backpropagation

with AdamW optimizer [35] which is widely adopted to fine-tune

Transformer-based models to update the model and minimize the

loss function.

5 EXPERIMENTAL RESULTS

In this section, we present the experiment results with respect to

our three research questions.

(RQ1) How accurate is our LineVul for
function-level vulnerability predictions?

Approach. To answer this RQ, we focus on the function-level

vulnerability predictions and compare our LineVul with the other

seven baseline models described as follows:

(1) IVDetect [30] leverages Feature-Attention Graph Convolu-

tional Network (GCN) for vulnerability predictions using five

types of feature representation (i.e., sequence of sub-tokens,

AST sub-tree, variable names and types, data dependency

context, and control dependency context) from the source

code;

(2) ReVeal [12] leverages a GatedGraphNeural Network (GGNN)

in order to learn the graph properties of source code;

(3) Devign [65] leverages a GatedGraphNeural Network (GGNN)

to automatically learn the graph properties of source code

(i.e., AST, CFG, DFG, and code sequences);

(4) SySeVR [32] uses code statements, program dependencies,

and program slicing as features for several RNN-based mod-

els (LR, MLP, DBN, CNN, LSTM, etc.) for classification;

(5) VulDeePecker [33] leverages a Bidirectional LSTM network

for statement-level vulnerability predictions;

(6) Russell et al. [43] leverages an RNN-based model for vulner-

ability predictions.

(7) BoW+RF (LineDP/JITLine) uses bag of words as features

together with a Random Forest model for software defect

predictions [38, 60].

Similar to Li et al. [30], we evaluate our LineVul with three

binary classification measures i.e., Precision, Recall, and F1-score.

Precisionmeasures the proportion of the functions that are correctly

predicted as vulnerable and the number of functions predicted as
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Figure 3: (RQ1) The experimental results of our LineVul and the seven baseline comparisons for function-level vulnerability

prediction. (↗) Higher F1, Precision, Recall = Better.

vulnerable by the model, which is computed as 𝑇𝑃
𝑇𝑃+𝐹𝑃 . Recall mea-

sures the proportion of the functions that are correctly predicted as

vulnerable and the number of actual vulnerable functions, which

is computed as 𝑇𝑃
(𝑇𝑃+𝐹𝑁 ) . F-measure is a harmonic mean of pre-

cision and recall, which is computed as 2×Precision×Recall
Precision+Recall . We use

the probability threshold of 0.5 as a cut-off value to indicate the

prediction label. The values of these measures range from 0 to 1

where 1 indicates the highest accuracy.

Results. Figure 3 presents the experimental results of our Line-

Vul and the seven baseline approaches according to our three

evaluation measures (i.e., F1, Precision, Recall).

Our LineVul achieves an F-measure of 0.91, which is 160%-

379% better than the state-of-the-art approaches with a me-

dian improvement of 250%. In terms of F-measure, Figure 3

shows that LineVul achieves the highest F-measure of 0.91, while

the state-of-the-art approaches achieve an F-measure of 0.19-0.35.

This finding shows that LineVul substantially improves the state-

of-the-art by 160%-379% with a median improvement of 250%. In

terms of Precision, Figure 3 shows that LineVul achieves the high-

est Precision of 0.97, while the state-of-the-art approaches achieve

a Precision of 0.12-0.48. This finding shows that LineVul substan-

tially improves the state-of-the-art by 102%-708% with a median

improvement of 439%. In terms of Recall, Figure 3 shows that Line-

Vul achieves the highest Recall of 0.86, while the state-of-the-art

approaches achieve a Recall of 0.17-0.86. This finding shows that

LineVul substantially improves the state-of-the-art by 16%-406%

with a median improvement of 65%.

In other words, our results demonstrate that the use of se-

mantic and syntactic features with a Transformer architec-

ture outperforms existing work that use graph properties of

source code. Our finding is different from the findings of many

recent studies who found that the use of graph properties (e.g., Data

Dependency Graph, Abstract Syntax Tree, Control Flow Graph, and

Data Flow Graph) often outperform the use of syntactic and seman-

tic features for vulnerability predictions [12, 29, 65]. This is because

the RNN-based approaches (e.g., RNN, LSTM, GRU) used as a base-

line in prior studies (1) are trained on a project-specific dataset;

and (2) suffer from capturing the long-term dependencies of source

code, as discussed in Section 2.1 (cf. Limitations 1 , 2 ). Different

from prior studies, our results confirm that our LineVul approach

is more accurate than the state-of-the-art approaches, highlighting

the substantial benefits of the use of the CodeBERT pre-trained lan-

guage model trained on million GitHub repositories and the use of

Transformer architecture to capture the long-term dependencies of

source code, leading to significant improvement of the vulnerability

prediction approach at the function level.

(RQ2) How accurate is our LineVul for line-level
vulnerability localization?

Approach. To answer this RQ, we focus on evaluating the accuracy

of the line-level vulnerability localization. Thus, we start from the

vulnerable functions that are correctly predicted by our approach.

Then, we perform the Step 3 (see Section 3.2) to identify which

lines are likely to be vulnerable for a given function predicted as

vulnerable. Thus, each line in the given function will have their

own score (i.e, line-level score). Since other approaches in RQ1 are

not designed for the line-level localization, we do not compare our

approach with them. Instead, we compare our LineVul approach

with 5 other model-agnostic techniques that are commonly used

for deep learning models as follows:

(1) Layer Integrated Gradient (LIG) [48] is an axiomatic path-

attribution method that attributes an importance score to

each input feature by approximating the integral of gradients

of the model’s output with respect to the inputs along the

path (straight line) from given baselines to inputs.;

(2) Saliency [47] takes a first-order Taylor expansion of the

network at the input, and the gradients are simply the co-

efficients of each feature in the linear representation of the

model. The absolute value of these coefficients can be taken

to represent feature importance.;
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(3) DeepLift [11, 46] compares the activation of each neuron

to its reference activation and assigns contribution scores

according to the difference;

(4) DeepLiftSHAP [36] extends DeepLift algorithm and approx-

imates SHAP values using DeepLift approach;

(5) GradientSHAP [36] approximates SHAP values by comput-

ing the expectations of gradients by randomly sampling from

the distribution of baselines;

(6) CppCheck [2] is a static code analysis tool for the C and C++

programming languages.

To evaluate our LineVul approach for line-level vulnerability

localization, we use the following two measures described below:

1) Top-10Accuracymeasures the percentage of vulnerable func-

tions where at least one actual vulnerable lines appear in

the top-10 ranking. The intuition is that security analysts

may ignore line-level recommendations if they do not appear

in the top-10 ranking, similar to any recommendation sys-

tems [37]. Thus, top-10 accuracy will help security analysts

better understand the accuracy of the line-level vulnerability

localization approaches.

2) Initial False Alarm (IFA) measures the number of incorrectly

predicted lines (i.e., non-vulnerable lines incorrectly pre-

dicted as vulnerable or false alarms) that security analysts

need to inspect until finding the first actual vulnerable line

for a given function. IFA is calculated as the total number

of false alarms that security analysts have to inspect until

finding the first actual vulnerable line. A low IFA value indi-

cates that security analysts only spend less amount of effort

in inspecting false alarms.

Results. Figure 4 presents the experimental results of our Line-

Vul and the five baseline approaches according to our two evalua-

tion measures (i.e., Top-10 Accuracy and IFA).

Our LineVul achieves a Top-10 Accuracy of 0.65, which is

12%-25% more accurate than the other baseline approaches.

In terms of Top-10 Accuracy, Figure 4 shows that LineVul achieves

the highest Top-10 Accuracy of 0.65 while the state-of-the-art ap-

proaches achieve a Top-10 Accuracy of 0.52-0.58. In terms of IFA,

Figure 4 shows that LineVul achieves the lowest median IFA of 1

while the baseline approaches achieve a median IFA of 3-4. This

finding shows that LineVul substantially improves the baseline

approaches by 67%-75% with a median improvement of 67%. These

results confirm that our LineVul approach is more accurate than

the baseline approaches for line-level vulnerability localization.

In other words, our results demonstrate that the attention

mechanism outperforms other model-agnostic techniques.

In the line-level defect prediction literature, prior studies [38, 60]

often leverage a LIME model-agnostic technique [42] to explain

the predictions of DL/ML-based defect prediction models. How-

ever, such model-agnostic techniques are considered as a extrinsic

model-agnostic technique (i.e,. a model-agnostic is applied to ex-

plain a black-box DL/ML model after the model is trained), not

an intrinsic model-agnostic technique (i.e., a DL/ML model that is

interpretable by itself so extrinsic model-agnostic techniques are

not needed to apply afterward). Although it is widely known that

deep learning is complex and hardly interpretable, this paper is

among the first attempt to leverage the attention mechanism to
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Figure 4: (RQ2) The Top-10 Accuracy and IFA of our self-

attention approach and five other methods. (↗) Higher Top-

10 Accuracy = Better, (↘) Lower IFA = Better.

explain the prediction of Transformer-based models, highlighting

the substantial benefits of the attention mechanism for line-level

vulnerability localization.

(RQ3) What is the cost-effectiveness of our
LineVul for line-level vulnerability localization?

Approach. To answer this RQ, we focus on evaluating the cost-

effectiveness of our LineVul approach for line-level vulnerability

localization. In the real-world scenario, the most cost-effective line-

level vulnerability prediction approaches should help security ana-

lysts to find the highest number of actual vulnerable lines with the

least amount of effort. Thus, let’s assume that the 18,864 functions

(i.e., 504,886 LOC) in the testing dataset are functions that security

analysts have to inspect. To measure the cost-effectiveness of our

approach, we first obtain the predictions from our LineVul ap-

proach. Then, we sort the predicted functions according to the

predicted probability. Among the functions predicted as vulnerable,

we sort the lines according to the line score obtained from Step 3

of our approach in descending order. Thus, lines with the highest

score (i.e., likely to be vulnerable) will be ranked at the top. Then,

we evaluate the cost-effectiveness using the following measures:

1) Effort@20%Recall measures the amount of effort (measured

as LOC) that security analysts have to spend to find out the

actual 20% vulnerable lines. It is computed as total LOC used

to locate 20% of the actual vulnerable lines divided by total

LOC in the testing set. A low value of Effort@20%Recall

indicates that the security analysts may spend a smaller

amount of effort to find the 20% actual vulnerable lines.

2) Recall@1%LOCmeasures the proportion of actual vulnerable

lines that can be found (i.e., correctly predicted) given a fixed

amount of effort (i.e., the top 1% of LOC of the given testing

dataset). Recall@1%LOC is computed as the total number of

correctly located vulnerable lines within the top 1% lines in

the testing set divided by total number of actual vulnerable

lines in the testing set. A high value of Recall@1%LOC in-

dicates that an approach can rank many actual vulnerable

lines at the top.
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= Better.

Results. Figure 5 presents the experimental results of our Line-

Vul and the five baseline approaches according to our two evalua-

tion measures (i.e., Effort@20%Recall and Recall@1%LOC).

Our LineVul achieves an Effort@20%Recall of 0.75, which

is 29%-53% less than other baseline approaches. In terms of

Effort@20%Recall, Figure 5 shows that LineVul achieves the lowest

Effort@20%Recall of 0.75% while the baseline approaches achieve

an Effort@20%Recall of 1.06%-1.60%. It means that security analysts

may spend effort to inspect 0.75% of the total LOC in the testing

dataset (0.75%*504,886=3,786 LOC) in order to find 20% of the actual

vulnerable lines (i.e., 20%Recall). Thus, this finding indicates that

our approach may help security analysts spend less amount of effort

in order to find the same amount of actual vulnerable lines.

In terms of Recall@1%LOC, Figure 5 shows that LineVul achieves

the highest Recall@1%LOC of 0.24, while the baseline approaches

achieve a Recall@1%LOC of 0.13-0.19, indicating that LineVul sub-

stantially improves the baseline approaches by 26%-85% with a me-

dian improvement of 85%. This finding implies that our approach

may help security analysts to find more actual vulnerable lines than

other baseline approaches given the same amount of effort that

they have to inspect.

6 DISCUSSION

6.1 Why LineVul performs so well for
vulnerability predictions?

We conduct an ablation study on function-level vulnerability pre-

diction to quantify the contributions of the components of our

LineVul approach. Generally, our LineVul approach consists of 3

components: BPE+PretrainingCode+BERT. To understand the con-

tribution of each component, we alter each of the components as

follow (highlighted as underline):

• Word-Level+PretrainingCode+BERT: Remove the BPE subword

tokenization, but use a word-level tokenization instead.

• BPE+No Pretraining+BERT: Remove the pretraining, but use

non-pretrained weights to initialize BERT instead.

• Word-Level+No Pretraining+BERT: Remove the BPE and the

pre-training on source code components, but useWord-Level

tokenization and non-pretrained weights to initialize BERT.

Table 1: The contribution of each component of LineVul for

function-level vulnerability predictions.

Model F1 Precision Recall

LineVul (BPE+PretrainingCode+BERT) 0.91 0.97 0.86

BPE+No Pretraining+BERT 0.80 0.86 0.75

Word-Level+PretrainingCode+BERT 0.42 0.55 0.34

Word-Level+No Pretraining+BERT 0.39 0.43 0.36

IVDetect 0.35 0.23 0.72

We find that the BPE component of our LineVul is themost

important.Within our LineVul, the BPE component contributes to

53.8% of the F-measure. When comparing between (BPE+Pre+BERT

and Word-level+Pre+BERT) where the BPE component is changed

to a word-level tokenizer, we observe a performance decrease from

0.91 to 0.42, accounting for 53.8%. This finding indicates that BPE

subword-level tokenization is very beneficial for source code pre-

processing than word-level tokenization. We suspect that source

code often contains uncommon keywords (e.g., variable names,

identifies) than the natural languages (e.g., English). Thus, lan-

guage models of code may not be to generate the most meaningful

vector representation for such uncommon keywords in the source

code when using word-level tokenization. Instead, when using

BPE subword-level tokenization, such uncommon words (e.g., [’un-

PremulSkImageToPremul’]) are broken into common subwords (e.g.,

[’un’, ’Prem’, ’ul’, ’Sk’, ’Image’, ’To’, ’Prem’, ’ul’]). Karampatsis et

al. [27] conduct a study of how different modelling choices affects

the model performance of language models of source code and find

the advancement of leveraging BPE model for language modeling

of source code. Similar to their results, we find that the use of BPE

will not only reduce the size of the unique vocabulary but also help

the language models of code to better understand the relationship

between a given subword and their surrounding subwords in or-

der to generate more meaningful vector representation, achieving

higher accuracy.

Within our LineVul, the pre-training component contributes to

12.1% of the F-measure. When comparing between (BPE+Pre+BERT

and BPE+No Pre+BERT) where the pre-training component is elim-

inated, we observe a performance decrease from 0.91 to 0.80, ac-

counting for 12.1%. This is because the pre-training language model

of code has learnt the relationship of tokens from million GitHub

repositories, therefore, generating more meaningful vector rep-

resentation than the approach without pre-training. This finding

confirms that the use of pre-training language model of code (i.e.,

CodeBERT) to generate vector representation outperforms an ap-

proach that is only trained on project-specific dataset.

Within our LineVul, BPE component combined with the pre-

training component contribute to 57.1% of the F-measure. When

comparing between (BPE+Pre+BERT andWord-level+No Pre+BERT)

where both BPE and Pre-training are altered, we observe a perfor-

mance decrease from 0.91 to 0.39, accounting for 57.1%.

Last but not least, we find that our LineVul that leverages

bothBPE andpre-training provides the best F-measure among

all variants, which is 160% better than IVDetect, highlighting the
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Table 2: (Discussion) The Accuracy of our LineVul for the

Top-25 Most Dangerous CWEs (https://cwe.mitre.org/top25/

archive/2021/2021_cwe_top25.html).

Rank CWE Type Name TPR Proportion

1 CWE-787 Out-of-bounds Write 75% 18/24

4 CWE-20 Improper Input Validation 86% 98/114

8 CWE-22 Path Traversal 100% 4/4

12 CWE-190 Integer Overflow 90% 27/30

17 CWE-119 Improper Restriction 88% 173/197

20 CWE-200 Exposure of Sensitive Info 85% 45/53

25 CWE-77 Improper Neutralization 100% 2/2

TOTAL 87% 367/424

significant advancement of LineVul for line-level vulnerability

predictions.

6.2 How accurate is our LineVul for predicting
the Top-25 Most Dangerous CWEs?

Our LineVul can correctly predict 87% of the vulnerable

functions affected by the Top-25most dangerous CWEs. CWE

(Common Weakness Enumeration) is a list of vulnerability weak-

nesses in software that can lead to security issues with its severity

of risk, providing guidance to organizations and security analysts to

best secure their software systems. To better understand the signifi-

cance of our LineVul on the practical usage scenarios, we perform

a further investigation to better understand our accuracy for the

Top-25 most dangerous CWEs. The Top-25 most dangerous CWEs

are the most common and impactful issues experienced over the pre-

vious two calendar years. Such weaknesses are dangerous because

they are often easy to find, exploit, and can allow adversaries to

completely take over a system, steal data, or prevent an application

from working. Since not all of the Top-25 most dangerous CWEs

are included in the studied datasets, Table 2 presents the results for

the ones that are included in the dataset. We compute the accuracy

as the True Positive Rate (TPR) to focus on the vulnerable functions

that are correctly predicted by our LineVul. We find that LineVul

achieves an accuracy of 75% (CWE-787 Out-of-bounds Write) to

100% (CWE-22 Path Traversal, CWE-77 Improper Neutralization),

depending on the CWE types in the dataset.

7 RELATEDWORK

7.1 DL-based Vulnerability Prediction

Traditionally, ML-based vulnerability prediction approaches are

proposed by using software metrics as features (e.g., code com-

plexity) [45, 66]. The use of software metrics is also widely use

in the defect prediction literature [24, 25, 49, 50, 53–57, 63]. How-

ever, the collection of such software metrics is manual and time-

consuming. Thus, multiple DL-based approaches have been pro-

posed to automatically learn the vulnerability patterns from histor-

ical data [12, 30–33, 39, 43, 65].

Therefore, an RNN-based architecture (i.e., LSTM) is used to

automatically learn the semantic and syntactic features of source

code [14, 43]. For example, Russell et al. [43] proposed an RNN-

based architecture to automatically extract feature of source code

for vulnerability prediction. Dam et al. [14] proposed a LSTM-based

architecture to automatically learn the semantic and syntactic fea-

tures of source code. However, the RNN-based approaches often

assume that source code is a sequence of tokens without consider-

ing the graph structure of source code (e.g., Abstract Syntax Trees),

leading to inaccurate predictions.

Therefore, Li et al. [33] proposed VulDeePecker which is an

RNN-based model that is learnt from different types of graph prop-

erties of source code (e.g., Data Dependency Graph). However, the

VulDeePecker approach still learns the graph properties in a se-

quential fashion, without leveraging the graph neural network.

Therefore, a Graph Neural Network has been recently used to learn

the graph properties of source code for vulnerability predictions.

For example, Zhou et al. [65] leveraged a Graph Neural Network to

learn four types of graph properties of source code, i.e., Abstract

Syntax Tree, Control Flow Graph, Data Flow Graph, and syntactic

features. Chakraborty et al. [12] proposed Reveal, which is a Gated

Graph Neural Network (GGNN) that learns the graph properties of

source code.

While these studies focus on the vulnerability predictions at the

file/function level, our LineVul focuses on the line-level vulnera-

bility prediction problem—which still remains largely unexplored.

7.2 Line-Level Vulnerability Prediction

Although various vulnerability prediction approaches are proposed,

they mainly focus on the granularity of file, function, method

levels—which is still coarse-grained. Thus, Li et al. [31, 32] pro-

posed VulDeeLocator, which is based on a program slicing tech-

nique to narrow down the scope of vulnerability localization. In

addition, Li et al. [30] also proposed IVDetect, which leverages a

Graph Neural Network (GNN) for function-level predictions and a

GNNExplainer to identify which sub-graph contributes the most to

the predictions. Yet, security analysts still need to manually locate

which lines in the sub-graph are actually vulnerable.

Similarly, line-level defect prediction has recently received high

attention from the research community [38, 39, 60]. For example,

Pornprasit and Tantithamthavorn [38] and Wattanakriengkrai et

al. [60] proposed a machine learning-based approach with LIME

model-agnostic technique (BoW+RF+LIME) to predict which lines

are likely to be defective in the future. However, such approaches

only learn the frequency of the appearance of code tokens in a file

(i.e., Bag-of-Word), without considering the lexical and semantic of

source code (i.e., the sequence of code tokens).

To the best of our knowledge, this paper is among the first to

leverage the attention mechanism inside the BERT architecture for

line-level vulnerability predictions.

7.3 Explainable AI for SE

The explainability of AI models in SE becomes one of the research

grand challenges [51] (see http://xai4se.github.io), since practition-

ers often do not trust the predictions [52], hindering the adoption

of AI-powered software development tools in practices. Recently,
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Explainable AI has been actively investigated in the domain of

defect prediction [52, 58]. For example, recent works have shown

some successful case studies to make defect prediction models more

practical [38, 60], explainable [22, 28], and actionable [40, 41]. How-

ever, these studies only focus on explaining the traditional machine

learning models, not the complex black-box deep learning models.

Recently, researchers start to explore the explainability of AI

models in various SE tasks (i.e., leveraging the attention weights

to provide meaningful ‘explanations’ for predictions). For exam-

ple, Fu and Tantithamthavorn [18] proposed a GPT-2 based Agile

story point estimation, by leveraging the Integrated Gradient at-

tention to interpret the GPT-2 model and understand what words

in a JIRA issue report contributed to the estimation of Agile story

points. Similarly, Pornprasit and Tantithamthavorn [39] proposed

a Hierarchical Attention Network (HAN) architecture for line-level

defect prediction, by leveraging the attention mechanism of the

HAN architecture to understand what code tokens in a source code

contributed to the prediction of defective files. However, Jain et

al. [21] argued that the learned attention weights are frequently

uncorrelated with gradient-based measures of feature importance,

while Wiegreffe et al. [61] argued that the accuracy/reliability of

such attention weights could provide meaningful explanations, de-

pending on the definition and the rigor of experimental design.

To the best of our knowledge, this paper is among the first to

leverage the attention mechanism of BERT architecture for line-

level vulnerability predictions. This concept is directly aligned with

findings from AI discipline by Wiegreffe et al. [61]. However, this

concept is still novel for line-level vulnerability predictions, since

prior works [18, 39] only focused on explaining Agile story point es-

timations and defect predictions—not CodeBERT-based line-level vul-

nerability predictions. Our results in RQ2 and RQ3 confirm that the

use of self-attention mechanism outperforms other model-agnostic

techniques for line-level vulnerability predictions.

8 THREATS TO VALIDITY

Threats to the construct validity relate to the dataset selection.

We use Fan et al. [16] dataset when conducting our experiments.

Other datasets [12, 65] are not selected because they only provide

ground-truths at the function level, which is not suitable for our

research scope. Thus, we use the same dataset that was used by

IVDetect for a fair comparison.

Moreover, our line-level prediction results (RQ2 and RQ3) are

not compared with IVDetect [30], since their interpretation is based

on subgraphs, not lines. The different granularity of local interpre-

tation makes the comparison infeasible. In addition, LIME [42] that

is widely used in prior defect prediction studies [22, 23, 38, 40, 41]

is not used since it is best designed for ML techniques, not com-

plex deep neural networks. To mitigate this threat, we compare

our approach with many other advanced model-agnostic tech-

niques that are suitable for deep neural networks, e.g., Layer In-

tegrated Gradient [48], Saliency [47], DeepLift [46], and SHAP-

based techniques [36]. Our experiment results still confirm that

the self-attention used by our LineVul outperforms other baseline

approaches.

Threats to the internal validity relate to hyperparameter set-

tings when fine-tuning our LineVul model. We use the default

hyperparameter settings as specified by Feng et al. [17]. As hyper-

parameter tuning is extremely expensive for a BERT-based model

that consists of millions of parameters, we only tune the learning

rate and set it to 2𝑒−5 in the end.

The window size of our approach is limited to 512 tokens. Thus,

our approach may not be able to fully learn any function that is

longer than 512 tokens. Nevertheless, to maximize the benefit of

using the CodeBERT pre-trained model, it is best to not extend the

window size. Thus, extending the window size of our approach can

be explored in future work.

In RQ1, the IVDetect result is reused from Li et al. [30], which

cannot verified by us. While Li et al. [30] published a replication

package for future research, we attempted our best to reproduce

the results of the IVDetect approach. Unfortunately, we are not able

to rerun their experimental scripts. This concern is also shared by

others [6]. To mitigate this threat, we have to reuse the IVDetect

result for RQ1 in order to ensure that there exists no potential bias in

the re-implementation of the baseline approaches. Nevertheless, we

strictly followed the experimental setup of IVDetect to ensure that

we used the same data splitting strategy for a fair comparison (80%

for training, 10% for validation, and 10% for testing). In addition,

time-wise evaluation scenarios are not considered in this paper,

since the dataset is at the function level (not the commit level).

To mitigate these threats, we publish our replication package to

improve the transparency of our work.

In RQ2, Top-10 accuracy is only meaningful for the function

size of greater than 10 lines. We observed that there are 16% of

vulnerable functions (1,840/10,900) that have less than 10 lines. Thus,

Top-10 accuracy is still sensible for the majority of the vulnerable

functions (84%). To mitigate this threat, we experiment with other 𝑘

values (i.e., Top-3 and Top-5 Accuracy). We found that the attention

mechanism used in our approach is still top-performing (see in

Appendix in our replication package). Thus, the 𝑘 value does not

pose any threats to the validity of our results.

Threats to the external validity relate to the generalizability

of our LineVul approach. We conduct our experiment using a large-

scale line-level vulnerability dataset (i.e., Fan et al. dataset) to ensure

a fair comparison with the IVDetect approach [30]. Thus, other

line-level vulnerability datasets can be explored in future work.

9 CONCLUSION

In this paper, we propose LineVul, a Transformer-based vulnerabil-

ity prediction approach to predict which functions will be vulnera-

ble and which lines are vulnerable. Through an empirical evaluation

of a large-scale real-world dataset with 188k+ C/C++ functions, we

show that LineVul achieves (1) 160%-379% higher F1-measure for

function-level predictions; (2) 12%-25% higher Top-10 Accuracy for

line-level predictions; and (3) 29%-53% less Effort@20%Recall than

the state-of-the-art approaches. Our results confirm that LineVul is

more accurate and more fine-grained than existing vulnerability

prediction approaches. Thus, we expect that our LineVul may help

security analysts to find vulnerable lines in a cost-effective manner.
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