
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

DeepVulMatch: Learning and Matching Latent
Vulnerability Representations for Dual-Granularity

Vulnerability Detection
Michael Fu , Trung Le , Member, IEEE, Van Nguyen , Member, IEEE,

Chakkrit (Kla) Tantithamthavorn , Senior Member, IEEE, and Dinh Phung , Member, IEEE

Abstract— Deep learning (DL) models are widely used to
detect software vulnerabilities, but identifying vulnerabilities at
the line level remains challenging due to varied coding styles and
the spread of vulnerabilities across multiple lines. We observe
that vulnerable line embeddings tend to form clusters in the
feature space, which can help models capture hidden patterns
more effectively. In this paper, we propose a novel approach
that leverages vector quantization (VQ) and optimal transport
(OT) to exploit the clustering characteristics of vulnerable line
embeddings and enhance detection performance. Specifically,
we extract vulnerable line embeddings from the training data
to form a vulnerability collection, which we condense into a
compact vulnerability codebook using VQ and OT. Inspired by
static analysis tools that rely on pattern matching, our model
uses this codebook to match latent vulnerability representations
during inference. Our approach also introduces dual-granularity
detection, predicting both vulnerable functions and, when a
function is predicted vulnerable, identifying the specific vulnerable
lines within it. We evaluate our approach against 12 baselines on
two large-scale datasets of real-world open-source vulnerabilities.
Our method achieves the highest F1 scores at both the function
and line levels. The training code and pre-trained models are
available at: https://github.com/awsm-research/DeepVulMatch.

Index Terms—Software Vulnerability Detection, Fine-grained
Vulnerability Detection, Optimal Transport, Vector Quantization.

I. INTRODUCTION

THE number of software vulnerabilities has been escalat-
ing rapidly in recent years. In particular, the National

Vulnerability Database (NVD) [3] reported 26,447 software
vulnerabilities in 2023, soaring 40% from 18,938 in 2019.
The extensive use of open-source libraries, in particular, may
contribute to this rise in vulnerabilities. For instance, the
Apache Struts vulnerabilities [4] indicate that this poses a
tangible threat to organizations. The root cause of these
vulnerabilities is often insecure coding practices, making the
source code exploitable by attackers who can use them to
infiltrate software systems and cause considerable financial and
social harm.

To mitigate security threats, security experts leverage static
analysis tools that check the code against a set of known

Michael Fu is with School of Computing and Information Systems, The
University of Melbourne, Melbourne, Australia.
E-mail: michael.fu@unimelb.edu.au

The remaining authors are with the Faculty of Information Technology,
Monash University, Melbourne, Australia.
E-mail: {trunglm, van.nguyen1, chakkrit, dinh.phung}@monash.edu

Manuscript received Feb 24, 2025; revised N/A.

 static sk_sp<SkImage> unPremulSkImageToPremul(SkImage* input) {

 SkImageInfo info = SkImageInfo::Make(input->width(), input->height(),

 kN32_SkColorType, kPremul_SkAlphaType);

 RefPtr<Uint8Array> dstPixels = copySkImageData(input, info);

 if (!dstPixels)

 return nullptr;

 return newSkImageFromRaster(

 info, std::move(dstPixels),

 static_cast<size_t>(input->width()) * info.bytesPerPixel()); // Vulnerable

 }

 GPMF_ERR IsValidSize(GPMF_stream *ms, uint32_t size)

 {

 if (ms)

 {

 int32_t nestsize = (int32_t)ms->nest_size[ms->nest_level]; // Vulnerable

 if (nestsize == 0 && ms->nest_level == 0)

 nestsize = ms->buffer_size_longs;

 if (size + 2 <= nestsize) return GPMF_OK;

 }

 return GPMF_ERROR_BAD_STRUCTURE;

}

CWE-787 Example | Language: C

CWE-787 Example | Language: C

1

2

3

4

5

6

7

8

9
10

1

2

3

4

5
6

7

8

9

10

11

Fig. 1. In both functions, the CWE-787 (Out-of-Bound Write) vulnerability
is triggered by an inappropriate data type assignment. In the unPremulSkIm-
ageToPremul [1] function above, the size_t type should be changed to the
unsigned type. In the IsValidSize [2] function below, the int_32t should be
changed to uint_32t to prevent potential buffer overflow. Despite sharing the
same vulnerability type and pattern, the vulnerable lines in each function and
their context are different in their written form, variable names, and positions.

patterns of insecure or vulnerable code, such as buffer overflow
vulnerabilities and other common security flaws. Deep learning
(DL)-based vulnerability detection (VD) methods have demon-
strated higher accuracy compared to static analysis tools [5].
Moreover, recent studies have proposed line-level VDs, that
can pinpoint vulnerable lines to minimize the manual analysis
burden on security analysts [6–8].

In this paper, we consider a vulnerability scope of a function
as the collection of all vulnerable lines in that function. As
illustrated in Figure 1, each function consists of one vulnerable
line with similar vulnerability scopes. This suggests that even
if two functions contain the same CWE-787 out-of-bound
write vulnerability (the top-1 dangerous CWE-ID in 2023 [9]),
the specific vulnerable lines can be written in different ways
and located in different parts of the code. Thus, identifying
vulnerabilities at the line level is challenging for DL models.

https://orcid.org/0000-0001-7211-3491
https://orcid.org/0000-0003-0414-9067
https://orcid.org/0000-0002-5838-3409
https://orcid.org/0000-0002-5516-9984
https://orcid.org/0000-0002-9977-8247
https://github.com/awsm-research/DeepVulMatch

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

On the other hand, we observed that the embeddings of
vulnerable lines form clusters in the feature space, where similar
embeddings are close to each other as presented in the upper
part of Figure 7. Harnessing this cluster information could
empower DL models to more effectively capture the latent
patterns within the feature space, which could significantly
enhance the accuracy of VD approaches for both function and
line-level predictions. Nevertheless, our analysis reveals that
state-of-the-art VD approaches have not effectively leveraged
the information presented in vulnerability scopes.

To address this gap, we propose a novel DL framework that
uses vector quantization (VQ) [10] with optimal transport
(OT) [11] to aggregate similar vulnerability scopes in the
training data, generating a “vulnerability codebook” consisting
of compressed vulnerability patterns that encapsulate simi-
lar vulnerability scopes. We then introduce a vulnerability-
matching technique to leverage the learned patterns during
inference. It is worth noting that in our approach, the labels
of vulnerable lines are only required during the training phase
to construct our codebook. Importantly, our method does
not depend on vulnerable line labels during the subsequent
validation and testing phases.

OT, through the Wasserstein distance [12], captures both
global variations across different types of vulnerabilities (e.g.,
control-flow vs. memory issues) and local variations within
similar vulnerabilities, allowing us to model variations across
different vulnerability scopes. This enables the formation of
representative centroids, effectively condensing vulnerability
vectors into a compact codebook. VQ [10] complements this
process by efficiently assigning each vulnerability vector to
its nearest centroid based on Euclidean distance, supporting
discrete pattern learning and compression. Together, OT and
VQ enable us to aggregate collected vulnerability vectors into
representative patterns, which are then used in our subsequent
vulnerability matching process. Below, we provide an overview
of our DEEPVULMATCH approach.

First, we introduce an RNN-based line embedding approach
to address the input length limitations commonly encountered
in Transformer models for deep learning-based vulnerability
detection [6, 7]. Prior work, such as by Reimers et al. [13],
applied Transformer-based architectures with mean or max
pooling to obtain line-level embeddings. In contrast, our method
employs a shallow, learnable RNN layer to aggregate subword
token embeddings into line embeddings. Our evaluation also
confirms that this learnable aggregation enables the model
to better capture contextual relationships within each line,
improving representation quality compared to static mean/max
pooling methods. Moreover, our approach allows the model
to process up to 3,100 tokens, substantially exceeding the
512-token limit of standard Transformer input representations.

Next, we extract a set of vulnerable line embeddings from
each vulnerable function in the training data, referring to each
set as a vulnerability scope. In total, we collect 6,361 vulnera-
bility scopes from the training set. Each scope—consisting of
multiple vulnerable line embeddings—is then summarized into
a single flat vulnerability vector using another shallow RNN,
resulting in 6,361 vulnerability vectors.

However, the numerous vulnerability vectors will require

intensive computation during our vulnerability-matching in-
ference. Thus, we leverage the clustering characteristic of
vulnerability vectors and apply the principle of VQ with OT
to transfer the mass distribution of vulnerability vectors into a
more compact distribution of vulnerability codebook involving
vulnerability patterns representing similar vulnerability vectors.
We effectively quantize 6,361 vectors into 150 patterns and
ensure that similar vulnerability vectors are mapped to the
same pattern in the embedding space. Ultimately, the codebook
encapsulates important vulnerable line information from the
training data.

Inspired by the pattern-matching concept used in program
analysis tools [14, 15], we further propose a vulnerability
matching to leverage critical vulnerable line information learned
from our VQ and OT processes. During inference, our model
matches the input program against all patterns in the learned
vulnerability codebook. By examining all the vulnerability
patterns in the codebook, the matching process enables a
thorough search for potential vulnerabilities. We name this
model DEEPVULMATCH, a deep learning-based vulnerability
matching approach using vector quantization (VQ) and optimal
transport (OT) for function and line-level VD. To the best
of our knowledge, we are the first to exploit vulnerable line
information presented in training data using VQ and OT along
with a vulnerability matching process, allowing us to further
improve the overall capability of DL-based VD.

It is important to note that our approach introduces a
dual-granularity vulnerability detection framework that detects
whether a function is vulnerable and, if so, pinpoints the specific
vulnerable lines. To achieve this, we jointly train the model
using both function-level and line-level labels, allowing it to
exploit the mutual information between the two levels for
improved accuracy. To ensure consistency between predictions,
line-level outputs are considered only if the function is predicted
as vulnerable.

We extensively evaluated our DEEPVULMATCH using two
datasets: the Big-Vul dataset [16] and the D2A dataset [17].
These datasets contain line-level vulnerability labels and are
widely used by prior VD works [6–8, 18, 19]. Specifically, the
Big-Vul dataset comprises over 188K C/C++ functions with
diverse real-world vulnerabilities extracted from multiple large-
scale open-source software projects spanning from 2002 to
2019. Through this evaluation, we aim to address the following
two research questions:

• (RQ1) What is the accuracy of our DEEPVUL-
MATCH for predicting function-level and line-level
vulnerabilities?
Results. Our DEEPVULMATCH approach achieves the
highest F1 scores for both function and line-level vul-
nerability predictions on both experimental datasets. Par-
ticularly noteworthy is the line-level F1 score of 82%
achieved by DEEPVULMATCH on the Big-Vul dataset,
surpassing the performance of the best baseline approach
by 32%.

• (RQ2) What are the contributions of each component
in our DEEPVULMATCH approach?
Results. The ablation study confirms the effectiveness of
our RNN-based line embedding over mean or max pool-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

ing methods proposed in Sentence-BERT. Furthermore,
our vulnerability matching approach, employing optimal
transport (OT) and vector quantization (VQ), significantly
improves the F1 score from 37% to 82%. Additionally,
the study validates our decision regarding the number of
patterns used for the OT process. These results validate the
technical proposal within our DEEPVULMATCH approach.

Novelty & Contributions. To the best of our knowledge,
the contributions of this paper are as follows:

• DEEPVULMATCH, an innovative DL-based vulnerability-
matching framework utilizing the optimal transport (OT)
theory and vector quantization (VQ) to locate line-level
vulnerabilities.

• A novel line embedding approach using recurrent neural
networks (RNNs) to represent code lines efficiently.

• A thorough evaluation of our method compared to other
DL-based vulnerability prediction methods on two real-
world vulnerability datasets.

• A comprehensive ablation study along with an extended
discussion to investigate each component in our DEEP-
VULMATCH approach.

Paper Organization. Section II presents background knowl-
edge of optimal transport (OT) and vector quantization (VQ)
and the motivation for using them followed by related works.
Section III describes the problem statement and motivation
behind our design rationale. It is followed by the technical
details of our DEEPVULMATCH approach, which aims to
detect line-level vulnerabilities using vulnerability matching
with OT and VQ. Section IV presents the experimental setup
and results. Section V-A presents the extended discussion of our
DEEPVULMATCH approach. Section VI discloses the threats
to validity. Section VII draws the conclusions.

Fig. 2. The t-SNE visualization of vulnerability scopes.

II. BACKGROUND & RELATED WORK

To investigate potential structure in the representation
space, we applied t-SNE to visualize the embedding space of
vulnerable lines within vulnerable functions from the training
data in our studied dataset. We observed that vulnerability
scopes tend to form clusters in the feature space, suggesting
the presence of recognizable hidden patterns, as shown in
Figure 2. Thus, we anticipate that incorporating this clustering

v1

v2

v3

v4

v5
c1

c2

Fig. 3. The green lines are benign code lines while the red lines are vulnerable
ones. We extract vulnerable lines as a vulnerability vector denoted as v. We
show that similar v sharing the same vulnerability pattern will stay close
to each other in the feature space. Thus, they can be further grouped into
vulnerability centroids denoted as c using optimal transport (OT).

characteristic could substantially enhance the performance of
vulnerability detection (VD) models.

To this end, we capture a set of distinct vulnerability scopes
in the training set. In total, we curate 6,361 diverse vulnerability
scopes, transforming each into a vulnerability vector v to
compose our vulnerability collection Vv. However, such a
huge collection will introduce a computational burden during
inference. To address this, we follow the principle of vector
quantization (VQ) [10] and employ optimal transport (OT) [11]
to quantize similar v instances into a vulnerability centroid
c as depicted in Figure 3. This approach aligns with our
observation that vulnerability scopes tend to cluster together,
which effectively reduces the collection size. The outcome
is a vulnerability codebook C comprising 150 vulnerability
centroids c representing common hidden patterns. To leverage
the potential of this codebook, we propose a vulnerability-
matching methodology. We match a testing function with each
centroid in our learned codebook to predict vulnerabilities at
the function and line levels. The matching concept is inspired
by static analysis tools that match human-defined patterns to
identify vulnerabilities, while we match patterns learned in
the feature space to detect vulnerabilities using deep learning
models.

Below, we introduce background knowledge of optimal trans-
port (OT) and vector quantization (VQ), and the motivations
for using OT and VQ, followed by a discussion of related
works.

A. Optimal Transport

Optimal transport theory, also known as transportation
theory or the theory of mass transportation, is a mathematical
framework that deals with the optimal ways to transport objects
from one place to another. Originally developed by Gaspard
Monge [20], OT theory has found applications in various fields,
including economics, physics, computer science, and machine
learning [21].

Optimal transport (OT) has been widely applied across
machine learning tasks, particularly in clustering and repre-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

sentation learning [22–25]. For example, Laclau et al. [22]
used OT for co-clustering to uncover structured relationships
between data instances and features. Del et al. [23] employed
OT to robustly cluster probability distributions via Wasserstein
barycenters. Yan et al. [24] unified subspace and spectral
clustering through OT to learn geometry-aware embeddings,
while Liu et al.[25] aligned clustering centers across domains
to improve efficiency and robustness in unsupervised domain
adaptation.

Inspired by these applications, we adopt OT in the vulnerabil-
ity detection domain to cluster vulnerable code representations.
This enables the identification of common vulnerability patterns
and the condensation of high-dimensional vectors into a com-
pact codebook of vulnerability centroids, facilitating efficient
vulnerability matching. Specifically, we rely on the Wasserstein
distance, a key component of optimal transport, to measure the
similarity between vulnerability vectors and centroids during
clustering.
Motivation. The Wasserstein distance [12] is used for cluster-
ing vulnerability vectors, as it captures both the global structure
across the dataset and local differences within individual
instances. This helps preserve important relationships between
vectors and centroids. By minimizing this distance during clus-
tering, we obtain representative centroids that reflect common
vulnerability patterns, improving the overall effectiveness in
our vulnerability matching process.

B. Vector Quantization

Vector quantization (VQ) is a technique used to reduce the
dimensionality of data by representing a large set of vectors
with a smaller set of prototype vectors, often referred to as
centroids. Each vector in the original set is assigned to the
nearest prototype vector, effectively quantizing the original
data into a compressed representation.

In particular, prior works leverage VQ for efficient data
compression and discrete representation learning. For example,
Lu et al. [26] proposed VQNet, a VQ network integrated into a
deep encoder-decoder for image compression. Chen et al. [27]
introduced a learning VQ method that compresses knowledge
into reference vectors to handle incremental few-shot learning
while reducing forgetting. Van et al. [10] presented VQ-VAE,
which uses VQ to learn discrete latent codes, enabling high-
quality generative modeling.

Drawing on VQ’s knowledge compression capability, we
apply VQ to the domain of vulnerability detection, aiming to
compress large sets of vulnerability feature vectors into a com-
pact set of representative centroids. This approach facilitates
efficient grouping and matching of similar vulnerability patterns,
reducing complexity while preserving essential information.
Below, we detail our method for integrating vector quantization
into the vulnerability detection pipeline. Below, we introduce
the motivation for why VQ is required in our framework.
Motivation. While the optimal transport learns to transfer
vulnerability vectors to centroids, we still need to determine
how we assign each vulnerability vector to its corresponding
centroid during training. Inspired by the VQ-VAE approach in
the computer vision domain [10], we leverage the VQ principle

to address the centroid assignment for each vulnerability vector.
In particular, each vulnerability vector will be assigned to
its representative centroid based on the Euclidean distance,
allowing us to effectively group similar vulnerability vectors
during training.

C. Related Work

1) Deep Learning-based Vulnerability Detection: Prior
works proposed various deep learning-based vulnerability
detections (VDs) such as convolutional neural networks
(CNNs) [28], recurrent neural networks (RNNs) [29–32], graph
neural networks (GNNs) [6, 8, 18, 33–35], and pre-trained
transformers [7, 8, 36, 37]. RNN-based methods [28, 29, 38]
have been shown more accurate than program analysis tools
such as Checkmarx [14] and RATS [39] to predict function-
level vulnerabilities.

However, RNNs face difficulty in capturing long-term depen-
dencies in long sequences as the model’s sequential nature may
result in the loss of earlier sequence information. Furthermore,
function-level predictions lack the required granularity to
accurately locate vulnerable lines. Thus, prior works proposed
transformer-based methods that predict line-level vulnerabilities
and capture long-term dependencies [7, 8].

Ding et al.[8] propose an ensemble approach that uses a
transformer model to capture global features and a GNN to
capture local features while Fu et al.[7] leverage a pre-trained
transformer model and interpret its attention scores as line-
level predictions. In addition, Nguyen et al.[40] leverages
bidirectional RNNs with information theory to detect line-level
vulnerabilities.

On the other hand, Zhou et al.[33] embed the abstract
syntax tree (AST), control flow graph (CFG), and data
flow graph (DFG) for a code function and learn the graph
representations for function-level predictions. Nguyen et al.[35]
proposed constructing a code graph as a flat sequence for
function-level predictions. Hin et al.[6] constructed program
dependency graphs (PDGs) for functions and predicted line-
level vulnerabilities.

Recent works have also explored deep learning-based vul-
nerability detection in domain-specific contexts. For instance,
Zhang et al. [41] focused on injection vulnerabilities in Java
web applications by integrating interprocedural program analy-
sis with a BERT-BiLSTM-CRF model, framing vulnerability
detection as a sequence labeling task. In the domain of smart
contracts, Huang et al. [42] proposed an interpretable detection
framework based on a Graph Isomorphism Network (GIN),
enhanced with domain-specific features and subgraph-level
explanations. Similarly, Chu et al. [43] introduced DeepFusion,
which combines program slicing and AST-based structural
features with a BiLSTM+Attention model for vulnerability
detection in smart contracts.

While previous studies focus on varying model architec-
tures such as RNNs, GNNs, and transformers, this paper
emphasizes a distinct avenue. We noticed that vulnerability
scope embeddings tend to cluster within the feature space.
Despite the potential enhancement this characteristic could
offer to VD models, prior works have overlooked this critical

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

aspect. In response to this gap, we employ the principle of
vector quantization (VQ) with optimal transport (OT) to exploit
the clustering characteristics and hidden patterns inherent in
vulnerability scope embeddings. Thus, this paper represents a
pioneering step in learning and matching vulnerability patterns
using OT and VQ.

2) Large Language Models for Vulnerability Detection:
Recent works have explored the use of large language models
(LLMs) for vulnerability detection (VD) [44, 45]. Fu et al.[45]
evaluated the performance of zero-shot ChatGPT for tasks such
as vulnerability detection, classification, and repair. Steenhoek
et al.[44] fine-tuned LLMs such as UniXcoder [46] for VD. Shu
et al.[47] evaluated the performance of LLMs with instruction
tuning for VD under a multilingual scenario. It is worth noting
that LLMs like ChatGPT [48], BARD [49], and CodeX [50]
have demonstrated their capabilities in source code-related
tasks, such as code generation. However, these LLMs were
not originally designed for software security applications.
Additionally, the architectures of ChatGPT, BARD, and CodeX
are not fully open-sourced. While our proposed framework
could theoretically be applied to these LLMs, the lack of access
to modify the model architecture makes it challenging for us
to implement our framework effectively for these advanced
LLMs.

Our study distinguishes itself from prior works that primarily
concentrate on model architecture or the use of large language
models (LLMs). Instead, this paper aims to bridge the gap
between the clustering characteristics of vulnerability scope
embeddings observed in the training data and vulnerability
detection (VD) models. Since large language models (LLMs),
typically consisting of billions of parameters, are not the
primary focus of this paper, we deliberately selected base-
size language models with 125M-225M parameters. This
decision was made to enhance the accessibility of our approach
and research, as well as to facilitate future reproduction.
By opting for base-size language models, we aim to reduce
resource consumption and lower the barrier of computational
requirements.

III. APPROACH

In this section, we first present the formal problem statement,
followed by the technical details of our DEEPVULMATCH ap-
proach. For clarity and ease of reference, Table I summarizes all
notations used in this section. Additionally, Figure 4 provides
a high-level overview of our approach during both training and
inference.

A. Problem Statement

Let us consider a dataset of N functions in the form of
source code. The data set includes both vulnerable and benign
functions, where the function-level and line-level ground truths
have been labeled by security experts. We denote a function as a
set of code lines, Xi = [x1, ...,xn], where n is the max number
of lines we consider in a function. Let a sample of data be{
(Xi, yi, zi) : Xi ∈ X , yi ∈ Y, zi ∈ Z, i ∈ {1, 2, ..., N}},

where X denotes a set of code functions, Y = {0, 1}
with 1 represents vulnerable function and 0 otherwise, and

TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Description
N Total number of samples in our dataset
n Max number of lines in a function
r Max number of tokens in a line
q Max number of vulnerable lines in a function
a Total number of vulnerable functions in training set
X Code function

Xvul Vulnerable lines in a function
x Code line
t Code token
y Function label
z Line label
S Code line embedding
P Vulnerable line embedding

Pbenign Special benign line embedding
Vv Vulnerability collection
V Vulnerability collection with special benign vectors
v Vulnerability vector
vb Special benign vector
C Vulnerability codebook
c Vulnerability centroid
c∗v Closest centroid to a vulnerability vector
E Token embedding layer

RNNline Line embedding RNN
RNNvul Vulnerability summarization RNN
RNNfunc RNN used to summarize the output of encoders

F Transformer encoders
H Input to transformer encoders
W I Linear projection for line-level prediction
WJ Linear projection for function-level prediction
ŷ Function prediction
ẑ Line prediction
Lf Function cross-entropy loss
Ls Line cross-entropy loss
Wd Wasserstein distance

Z = {0, 1}n denotes a set of binary vectors with 1 represents
vulnerable code line and 0 otherwise. Our objective is to identify
the vulnerability on both function and line levels. It should be
emphasized that our experimental datasets label the information
of vulnerable code lines, Z . However, it is crucial to note that
we only rely on this information during supervised training,
while such information is not required by our method during
the validation and testing phases.

We formulate function-level vulnerability detection (VD)
as a binary classification and line-level VD as a multi-label
classification problem. Given X , we use an RNN denoted
as RNNline to obtain S ∈ Rn×d, the d-dimensional line
embeddings for X . Let us denote Xvul as a set of all
vulnerable lines in a vulnerable function. We extract Xvul

from a vulnerable function and embed those vulnerable lines
as P ∈ Rq×d, where q is the maximum number of vulnerable
lines. We use the same RNNline to embed Xvul.

Note that for a benign function with no vulnerable lines, we
use a special learnable embedding denoted as Pbenign ∈ Rq×d.
We transform P into a flat vulnerability vector (denoted as
v ∈ Rd) using an RNN denoted as RNNvul. Additionally,
we transform Pbenign into a flat vector denoted as vb for
a benign function. We collect all v to form a vulnerability
collection Vv = [v1, ...,va] where a is the total number of
vulnerable functions in our training set. We obtain around 6,361

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Vulnerable Functions
In Training Set

Vulnerability
Vectors

v1
v2
va

…c1
ck…

Optimal Transport

Vector Quantization

Vulnerability
Codebook

Training Set RNN RNN Embeddings Transformer
Encoders

Function-Level Predictions

Line-Level Predictions

Testing SetRNNRNN EmbeddingsTransformer
Encoders

…c1
ck

Vulnerability
Codebook

Vulnerable Benign

cn

⊕
Centroid
Selection

Predict

Vulnerability Matching

Training Inference

Predict

Fig. 4. Overview of our DEEPVULMATCH approach. During training, vulnerability vectors from vulnerable functions are aggregated into centroids using
optimal transport and vector quantization, forming a vulnerability codebook. One centroid is selected for each input and combined with RNN embeddings and
fed into the model. During inference, RNN embeddings and the codebook are used for vulnerability matching, enabling both function-level and line-level
vulnerability detection.

vulnerability vectors from our training set. Handling such an
extensive collection size (Vv) will require significant computing
resources during our vulnerability matching inference, as
each testing sample needs to undergo 6,361 matches. Thus,
we condense Vv using optimal transport (OT) to cluster
vulnerability centroids, denoted as c. Each c represents a set
of similar v. Subsequently, we construct our vulnerability
codebook C = [c1, ...ck], with k representing the number of
vulnerability centroids.

Let us denote a stack of transformer encoders as F . In the
warm-up training, we input H = S ⊕ v ∈ R(n+1)×d into F .
We then make function and line-level predictions based on the
output of F .

Below, we introduce each component in our DEEPVUL-
MATCH approach. To support both function- and line-level
vulnerability detection, we begin by encoding each function us-
ing an RNN-based line embedding module. Unlike conventional
token-level embeddings, this component captures contextual
relationships across lines of code. We describe this module
below.

B. Line Embedding Using RNN

Prior research has used subword tokenization techniques to
segment code functions [6, 7, 36, 37]. In these studies, the
approach involved concatenating individual code lines within a
function and then transforming them into a sequence of subword
tokens using the byte pair encoding (BPE) algorithm [51].
However, many base-size models, such as CodeBERT-base,
face a limitation in processing only up to 512 token embeddings.
Consequently, this limitation has the potential to result in
information loss, particularly for longer functions that exceed
the 512-token threshold.

To address this limitation, our embedding transforms each
code line into a sequence of subword tokens, without con-
catenating the lines. Each code line is represented as a set
of token embeddings. Subsequently, we utilize a shared RNN
to summarize these token embeddings within each line, thus
creating a line embedding and representing each code line as
a vector.

Given X = [x1, ...,xn], we use BPE to tokenize x to a
list of tokens, [t1, ..., tr], where r is the number of tokens
we consider in a code line. We embed each t using a token
embedding layer E ∈ Rv×d where v is the vocab size.

This results in a d-dimensional token embedding, denoted
as S̄i ∈ Rn×r×d. We then input token embeddings into an
RNN and get line embeddings S, which can be summarized as
RNNline(E(x1), ..., E(xn)) where E(xi) ∈ Rr×d. We use
the identical line embedding method to embed Xvul as P.

It is worth noting that our line embedding methods can
process up to 3,100 tokens per input function which is six
times more than 512 tokens that can be accepted by common
source code language models such as CodeBERT-base [36].
Table II shows that our line embedding method results in more
than 30% enhancements in the performance of the CodeBERT
and CodeGPT models for line-level predictions.

Our approach includes a warm-up phase (Figure 5) followed
by a main training phase (Figure 6), both of which use the
same RNN embedding module to encode functions. In the
warm-up phase, we collect vulnerability vectors v to build a
vulnerability collection Vv and fine-tune the model for better
line-level representations. The main training phase introduces
our core idea—quantizing v into vulnerability centroids c, as
illustrated in Figure 3. Below, we describe the technical details
of the warm-up phase.

C. Training of Warm-Up Phase

For a vulnerable function, we concatenate line embeddings
S with a vulnerability vector v as H and input it to F . For a
benign function, we input H = S⊕vb to F . This input consists
of n code line embeddings with an additional vulnerability
vector. We select the n code line embeddings as H[1 : n].
We predict line-level vulnerabilities with H[1 : n]W I , where
W I ∈ Rd×1. We apply an RNN denoted as RNNfunc to
summarize line embeddings into a vector to predict function-
level vulnerabilities with RNNfunc(H[1 : n])W J , where
W J ∈ Rd×2. We minimize the training objective as follows:

1
N

∑N
i=1

[
Lf

(
RNN

(
F(S,v)

)
, y
)
+Ls

(
F(S,v), z

)]
(1)

where Lf and Ls are cross-entropy over function and line
labels respectively.

Having completed warm-up training with function and
line-level supervision, we now move to the main training
phase, initializing from the warmed-up model. This phase
incorporates optimal transport (OT) and vector quantization
(VQ) to enhance vulnerability pattern matching. It consists

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

of three key components: (1) collecting vulnerability vectors
from training functions, (2) clustering them into representative
centroids using OT and VQ to form a vulnerability codebook
that captures latent vulnerability patterns, and (3) jointly
updating the model parameters for both the OT/VQ modules
and the vulnerability detection task, using supervision from
function and line-level labels. The learned codebook serves as
a condensed set of latent vulnerability patterns, enabling the
model to match and detect vulnerabilities across diverse code
functions.

D. Quantizing Vulnerability Vectors: Optimal Transport and
Subsequent Main Training Phase

In this section, we introduce how we construct vulnerability
collection Vv. Then we describe how we transform Vv into
a vulnerability codebook C to reduce the collection size and
facilitate more efficient vulnerability matching. Finally, we
introduce how we use C in our main training phase.

1) Collect Vulnerability Vectors from Vulnerable Functions:
We extract vulnerable lines Xvul in the training set and use
RNNline to embed Xvul as P. We summarize each P into
a vulnerability vector v using RNNvul. We collect a total of
6,361 v from all of vulnerable X in our training set to form
our vulnerability collection Vv ∈ R6,361×h. We reduce the d-
dimensional v to h-dimensional to facilitate the upcoming
clustering. The large collection size of Vv will demand
substantial computing resources during inference because we
need to match each function with 6,361 vulnerability vectors.
Therefore, we use optimal transport (OT) to quantize similar
vulnerability vectors that share the same vulnerability patterns
into vulnerability centroids. In what follows, we outline the
process of OT that effectively reduces 6,361 vulnerability
vectors to 150 centroids.

2) Learn to Transport Vulnerability Vectors to Vulnerability
Centroids: As depicted in the left part of Figure 6, our goal
is to quantize Vv to a vulnerability codebook, C = [c1, ..., ck].
This codebook consists of a more compact set of vulnerability
patterns. To ensure that each c can represent a group of similar
v, we leverage the optimal transport (OT) theory to transfer
sets of v to their corresponding c.

We randomly initialize the embedding space of our vulner-
ability codebook as C = [c1, ..., ck] with the k number of
clusters. We minimize the Wasserstein distance [12] using the
Sinkhorn approximation [52] between Vv and C. Consequently,
v and their respective c will converge toward each other as
shown in Figure 3. Our codebook will ultimately comprise
vulnerability centroids acting as representative patterns that
symbolize different sets of vulnerability vectors. This allows us
to aggregate similar vulnerability scopes into patterns based on
the Euclidean distance. We summarize the process as follows:

minC Wd := Wd(PVv
,PC) (2)

where d(v, c) = ∥v − c∥2 represents Euclidean distance,
Wd is the Wasserstein distance [12], PVv

= 1
a

∑a
i=1 δvi

,
PC = 1

a

∑a
j=1, and δcj represents the Dirac delta distribution.

According to the clustering view of optimal transport [53, 54],
when minimizing minC Wd(PVv

,PC), C will become the

centroids of the clusters formed by Vv . This clustering approach
ensures that similar vulnerability scopes sharing the same
vulnerability pattern are grouped, leading to a quantized vul-
nerability codebook involving common vulnerability patterns.
Next, we introduce how we utilize our vulnerability codebook
in the main training phase.

Algorithm 1 Training Process of DEEPVULMATCH

Input: X , Ỹ , Z̃ , is_warm_up
Sample mini-batch of X̃ = X̃b ∪ X̃v

Compute Ṽ = Ṽb ∪ Ṽv and S̃, S̃ is a mini-batch of S
if is_warm_up then

Minimize objective function in (1) w.r.t. S̃ and Ṽ
else

Wd = Sinkhorn(Ṽv , C)
for v ∈ Ṽv do
c∗v = argminc∈C∥v − c∥2
Input = S⊕ c∗v to F

end for
for v ∈ Ṽb do
c∗v = vb

Input = S⊕ c∗v to F
end for
Minimize objective function in (4)

end if

3) Main Training Phase: The right part of Figure 6 summa-
rizes our main training phase. We load the model parameters
from the warm-up phase. We obtain the line embeddings S and
a vulnerability vector v for the input function X as introduced
in Section III-B. We employ a cluster selection process inspired
by VQ-VAE [10], utilizing the Euclidean distance to map v
to its most similar centroid denoted as c∗v selected from our
codebook C:

c∗v = argminc∈C∥v − c∥2 (3)

Note that for a benign function, we directly assign c∗v as vb.
We then concatenate S with c∗v and input H = S⊕ c∗v to F .
The subsequent forward passes are the same as our warm-up
phase. We minimize the loss function as follows:

1
N

∑N
i=1

[
Wd + Lf

(
RNN

(
F(S, c∗v)

)
, y
)
+Ls

(
F(S, c∗v), z

)]
(4)

Note that no real gradient is defined for v once we map it to
a c∗v via the argmin operation in Equation 3. To let the RNNs
that embed and summarize vulnerable lines be trainable via
backpropagation, we follow the idea in VQ-VAE [10] which
was shown effective for vector quantization. We copy gradients
from v to c∗v. Below, we present how to use our learned
codebook for vulnerability matching during inference.

E. Vulnerability Detection Through Explicit Vulnerability Pat-
terns Matching

Similar to static analysis tools that identify vulnerabilities
by matching predefined patterns, we match our pre-learned
vulnerability codebook to detect vulnerabilities using deep
learning models.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Benign Statement

Vulnerable Statement

Pad tokens

Token Embeddings

s1

…

s2

sn

Line
Embeddings

S

v
⊕

12-Layer Transformer Encoders

H[1 : n]

̂z

̂y

p1

...

pq

Input Vulnerable Function (Tokenized)

t1 t2 t3 … tr

Benign Statement

Vulnerable Statement

Vulnerable Statement

= H

Vulnerability
Summarization

P

X

Phase 1

Vulnerable Statement

Vulnerable Statement
Vulnerable Statement

Token
Embeddings

Input Vulnerable Lines (Tokenized) Line
Embedding

RNNline

RNNline

RNNvul

RNNfunc

Fig. 5. The overview of the warm-up phase in our approach. We tokenize each line in a vulnerable function (i.e., X) followed by an embedding layer to map
each token into a vector. We use RNNline to summarize the token embeddings and get the line embedding (S, P). For benign functions, P is replaced by a
special learnable embedding, Pbenign. We use RNNvul to summarize the embeddings of vulnerable lines P in a vector v that represents the vulnerability
scope. We concatenate S and v as the input to transformer encoders to consider vulnerability scopes that arise in the function and align with our vulnerability
matching process. We select the line embeddings output from the last encoder, i.e., H[1 : n]. Each line embedding vector is mapped to a probability as
line-level predictions, the function-level prediction is obtained by summarising H[1 : n] to a vector using an RNNfunc and mapping it to a probability.

Cluster Selection

…

Vulnerability Collection

𝒞𝒱v

Vulnerability Codebook
Vul Function 1

Vul Function a

R
ecurrent N

eural N
etw

orks

c1

va
ck

v2

v1
c1…

Centroid Representation Learning
Using Optimal Transport

v1

…

va

v2

ck

…
S

v

c*v
⊕ = H0

Gradient
Copy

12-Layer Transformer Encoders

̂y, ̂z

v
c1 c2 c3 … ck

d(v, c) = ∥v − c∥2

Learning a Vulnerability Codebook

min𝒞Wd := Wd(ℙ𝒱v
, ℙ𝒞)

c*v = argminc∈𝒞∥v − c∥2

At tScore

X

Phase 2

Fig. 6. The overview of the main training phase in our approach. We introduce how to learn our vulnerability codebook on the left. We first collect a set
of vulnerable line embeddings from our training data. We then use RNNvul to pool a set of line embeddings from each vulnerable function, forming a
vulnerability vector v. The set of these scopes forms our vulnerability collection Vv = {v1, . . . ,va}. Next, we learn vulnerability centroids c using the
Wasserstein distance metric to create a more compact vulnerability codebook C = {c1, . . . , ck}, where each centroid represents a group of v. During training,
we minimize the Wasserstein distance between each v and its corresponding centroid c∗v . As shown on the right, we input H = S⊕ c∗v to F . To overcome
the non-differentiability of the argmin operation in the networks, we copy the gradients from v to c∗v to learn RNNline and RNNvul.

For each testing sample X , we obtain d-dimensional line
embeddings S. We input H = S⊕c to F . We select the n code
line embeddings as H[1 : n]. We obtain function and line-level
predictions based on the output of F . We apply RNNfunc to
summarize line embeddings into a vector to predict function-
level vulnerabilities with RNNfunc(H[1 : n])W J , where
W J ∈ Rd×2. We predict line-level vulnerabilities with
H[1 : n]W I , where W I ∈ Rd×1. This process is iterated
for k = 150 times to match all of the vulnerability centroids
c in our codebook C.

To aggregate k number of predictions produced by our
matching process, apply max and mean pooling. We use max
pooling to select the most prominent matching result and then
use argmax to obtain the function-level prediction ŷ. If X is
predicted as a benign function, we directly output a zero vector
as the line-level prediction. Otherwise, we use mean pooling
to aggregate the line-level predictions into a flat probability
vector. We apply a probability threshold of 0.5 to transform
this probability vector into a binary vector as the final line-level
prediction ẑ.

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Research Questions

One of the key goals of this paper is to evaluate our
DEEPVULMATCH thoroughly by comparing it with other
baseline approaches that focus on the function-level and
line-level vulnerability detection tasks. We also formulate
an ablation study to support the design decision of our
DEEPVULMATCH approach. Below, we present the motivation
for our two research questions:

(RQ1) What is the accuracy of our DEEPVULMATCH for
predicting function-level and line-level vulnerabilities?
Recent studies have leveraged pre-trained language models with
transformer architectures to perform vulnerability detection ef-
fectively [7, 8, 44]. We found that different vulnerable functions
may form similar vulnerability patterns, as demonstrated in
Figure 1. This discovery suggests valuable information that
could enhance the performance of deep learning (DL) models
for locating line-level vulnerabilities. However, the use of
vulnerability patterns in DL models remains unexplored. To

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

address this gap, we propose DEEPVULMATCH, an innovative
framework that harnesses optimal transport (OT) and vector
quantization (VQ) techniques to learn and match vulnerability
patterns. This approach could facilitate the precise identification
of vulnerabilities at both function and line levels. Consequently,
we formulate this RQ to evaluate the accuracy of our proposed
framework in function and line-level vulnerability detection.

(RQ2) What are the contributions of each compo-
nent in our DEEPVULMATCH approach? Our DEEPVUL-
MATCH framework incorporates two crucial components: (i)
code line embeddings using RNNs, and (ii) optimal transport
(OT) and vector quantization (VQ). However, the specific
contributions of these components remain unexplored. We
thus formulate this research question as an ablation study to
assess the components in our DEEPVULMATCH framework
and empirically validate our design decisions.

B. Baseline Approaches

We compare our DEEPVULMATCH approach with lan-
guage models pre-trained on source code data, state-of-the-art
transformer-based, GNN-based, RNN-based, and CNN-based
vulnerability detection (VD) approaches proposed by prior
studies. For all of the pre-trained transformer baselines, we
use the standard size model (e.g., CodeT5-base, CodeBERT-
base, etc.) to ensure a fair comparison where each transformer
baseline has a similar number of parameters to our approach.
We reproduce twelve baselines in total, where each baseline
is fine-tuned on our studied dataset based on the code and
hyperparameters provided by the original authors.

Below, we describe each selected baseline along with the
justification for its inclusion.

1) Language Models for code: : We include five language
model baselines commonly adopted for source code-related
tasks: CodeT5P-220m [55], CodeT5-base [56], CodeBERT-
base [36], CodeGPT [57], and GraphCodeBERT-base [37].
Our DEEPVULMATCH is built on CodeT5-base, a model with
approximately 220M parameters. To ensure a fair comparison,
we selected language model baselines that are pre-trained
specifically for source code and have a comparable model size,
typically ranging from 120M to 220M parameters. Models of
similar size that are not pre-trained on code are excluded, as our
vulnerability detection task requires strong code understanding
capabilities.

2) Transformer-based VD: : We include two transformer-
based baselines as follows:

• LineVul [7] is designed to perform function-level pre-
diction by leveraging a pre-trained transformer model.
Although it can also provide line-level predictions by
interpreting and ranking the attention scores of the
transformer, this approach is not suitable for the line-
level classification setting. To ensure a fair comparison,
we only evaluate our approach against LineVul on the
function level.

• VELVET [8] is an ensemble method that leverages a
vanilla transformer with GNNs.

Transformer-based VD models have shown superior perfor-
mance compared to RNN-based approaches such as Russell et

al. [28], SySeVR [38], and VulDeePecker [29] on the same
dataset used in our study, Big-Vul [7]. Thus, we exclude RNN-
based models from our baseline comparison in favor of more
advanced transformer-based methods.

3) GNN-based VD: : We include three graph-based baselines
as follows (note that ReGVD and Devign only predict function-
level vulnerabilities):

• LineVD [6] leverages pre-trained CodeBERT embeddings
with GNNs to detect line-level vulnerabilities.

• ReGVD [35] represents a code function as a sequential
graph and uses GNNs to detect function-level vulnerabili-
ties.

• Devign [33] leverages code property graph (CPG) [58]
with GNNs to detect function-level vulnerabilities.

We include three graph-based baselines to represent a distinct
class of vulnerability detection approaches that leverage struc-
tural code representations, which are fundamentally different
from RNN- and transformer-based models. These methods
incorporate code properties such as abstract syntax trees (ASTs),
control flow graphs (CFGs), and data flow graphs (DFGs) to
model the semantics and structure of programs. In particular,
LineVD [6] aligns with our task by performing line-level
detection, while ReGVD [35] and Devign [33] are widely
adopted function-level baselines that capture code semantics
through graph-based reasoning.

4) Information Theory-based and CNN-based VD: : We
include one information theory-based and one CNN-based
baseline as follows:

• ICVH [40] is an information theory-based approach for
line-level vulnerability detection, originally designed for
unsupervised learning. To enable a fair comparison in
our supervised setting, we adapted the original ICVH
architecture by incorporating a cross-entropy loss for
training.

• TextCNN [59] uses convolutional layers for sentence
classification tasks.

We include the information theory-based ICVH [40] as it offers
a conceptually different approach to our line-level vulnerability
detection by modeling the information gain of vulnerable code
lines. We also include TextCNN [59] as a primitive CNN-based
baseline. Originally designed for sentence classification, its
architecture aligns with our line-level detection task, which
has not been previously evaluated for vulnerability detection
at the line level.

C. Experimental Datasets

It is important to highlight that common vulnerability
datasets such as Devign [33] and DiverseVul [60] are not
included in this study due to the absence of line-level vul-
nerability labels. To identify vulnerabilities on function and
line levels, we select the Big-Vul dataset [16] and the D2A
dataset [17] as they are two of the largest vulnerability data
sets with line-level vulnerability labels and has been used to
assess line-level vulnerability detection methods [6, 7]. Big-Vul
was collected from 348 Github projects and consists of 188k
C/C++ functions with 3,754 code vulnerabilities spanning 91
vulnerability types. The data distribution of Big-Vul resembles

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

real-world scenarios, where the proportion of vulnerable to
benign functions is 1:20. In contrast, D2A comprises around
6.5k samples, with an approximate 1:1 ratio of vulnerabilities,
all of which were extracted from real-world projects.

D. Parameter Settings and Model Training

We split the dataset into 80% for training, 10% for validation,
and 10% for testing. For both our approach and the baselines,
we consider functions with up to n = 155 lines and r = 20
tokens per line, based on descriptive statistics indicating that
95% of source code functions contain fewer than 155 lines,
and 95% of lines contain fewer than 20 tokens. We initialize
our Transformer encoders using CodeT5-base [56], which has
an embedding dimension of 768. For both training phases 1
and 2, we use the AdamW optimizer [61] with a learning
rate of 1× 10−4 and a maximum gradient norm of 1.0. The
model is trained for 20 epochs in each phase with a training
batch size of 64, and we select the checkpoint that achieves
the highest F1 score on line-level prediction in the validation
set. All experiments were conducted on a Linux machine
equipped with an AMD Ryzen 9 5950X processor, 64 GB of
RAM, and an NVIDIA RTX 3090 GPU. Complete details of
the hyperparameter settings for all baselines are provided in
our replication package at https://github.com/awsm-research/
DeepVulMatch.

(RQ1) What is the accuracy of our DEEPVULMATCH for
predicting function-level and line-level vulnerabilities?
Approach. We conduct experiments on the Big-Vul [16]
and D2A [17] datasets described in Section IV-C and com-
pare our DEEPVULMATCH methods with 12 other base-
lines described in Section IV-B. For both function and line-
level vulnerability prediction, we report: Precision (Pre) =

True Positives
True Positives+False Positives ; Recall (Re) = True Positives

True Positives+False Negatives ;
and F1 = 2×Precision×Recall

Precision+Recall . These measures enable us to
assess the models’ performance on both positive and negative
classes, regardless of the class imbalance between vulnerable
and benign functions. It is important to note that the line-
level metrics are computed on the line level instead of the
function level to determine if each line is correctly predicted.
Furthermore, we conduct an extra trial for four baselines:
CodeT5P-220m, CodeT5-base, CodeBERT-base, and CodeGPT.
We use our RNN line embedding method instead of their
token embedding to explore the potential enhancement of their
performance. Note that our line embedding is not compatible
with GraphCodeBERT’s data flow construction.

To ensure the robustness of our results, we repeat all experi-
ments on the Big-Vul dataset five times using different random
seeds and report the median ± standard deviation of each
method’s performance. We apply the Wilcoxon signed-rank
test and compute Cohen’s d as an effect size metric. Specifically,
we compare our approach against the best-performing baseline
in terms of F1 score at both the function and line levels.
Result. Table II presents the experimental results of our
DEEPVULMATCH approach and 12 other baseline approaches
according to the function and line-level precision, recall, and
F1 score. Our approach achieves an line-level F1 score

of 82% which reveals a 32% improvement over the best
baseline approach, VELVET [8]. Our approach achieves the
highest performance across all metrics in the Big-Vul dataset
[16]. Furthermore, it also secures the top F1 score for both
function and line-level prediction in the D2A dataset [17].

Notably, our RNN line embedding method significantly
enhances the line-level F1 score of CodeT5 (29% → 72%),
CodeT5P(29% → 67%), CodeBERT(27% → 63%), and
CodeGPT(12% → 44%) on both datasets in line-level
vulnerability prediction. This suggests that our RNN line
embedding approach is better suited for representing code
functions. Furthermore, line embeddings learn contextual infor-
mation on the line level, which may capture the relationships
and dependencies between lines more accurately than token
embeddings. This makes line embeddings more effective than
token embeddings for tasks that require a deeper understanding
of the code structure, such as detecting line-level vulnerabilities.

On the function level, we compare our DEEPVUL-
MATCH with the best-performing baseline, CodeT5, and ob-
serve a statistically significant improvement (p < 0.05, Cohen’s
d = 4.761). On the line level, our DEEPVULMATCH also
significantly outperforms the best baseline, VELVET, with
p < 0.05 and a Cohen’s d of 16.355. These results indicate
both statistical significance and a large practical effect. These
confirm the effectiveness of our proposed deep learning
framework for learning and matching vulnerability patterns to
predict function and line-level vulnerabilities. These findings
also validate our intuition that the line embeddings learned by
our proposed method can capture contextual information more
effectively than token embeddings, leading to more accurate
identification of lines associated with vulnerabilities.

Last but not least, Table III presents the training times of our
DEEPVULMATCH approach alongside several baseline methods.
Compared to most baselines, DEEPVULMATCH’s training
time is comparable to common transformer models such as
CodeT5, CodeT5P, and GraphCodeBERT. Other methods,
such as TextCNN, VELVET, ReGVD, and ICVH, require
substantially less training time. Nevertheless, our approach
demonstrates substantial performance improvement in line-
level vulnerability detection while maintaining comparable
training time with transformer-based models. This training
efficiency and effectiveness highlight the practical applicability
of DEEPVULMATCH in real-world scenarios, where both
accuracy and reasonable training duration are critical.

(RQ2) What are the contributions of each component in our
DEEPVULMATCH approach?

Approach. Our DEEPVULMATCH approach consists of two
key components: (i) code line embedding using RNN, in-
troduced in Section III-B, and (ii) optimal transport (OT)
and vector quantization (VQ), introduced in Section III-D.
We conduct an ablation study to assess the contribution of
these proposed components. Firstly, we examine the effect
of our RNN line embedding approach by comparing it with
commonly used mean and max pooling line embedding methods
proposed in Sentence-BERT [13]. Secondly, we investigate the
impact of our main components, OT and VQ, on learning

https://github.com/awsm-research/DeepVulMatch
https://github.com/awsm-research/DeepVulMatch

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE II
(RQ1 RESULTS) COMPARISON OF DEEPVULMATCH AGAINST 12 BASELINE METHODS ACROSS BIG-VUL AND D2A DATASETS. RESULTS IN PERCENTAGE.

Function Level Line Level Function Level Line LevelMethods Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1
Dataset Big-Vul Dataset D2A Dataset

DEEPVULMATCH (Ours) 97.75 ± 0.65 88.52 ± 1.26 92.77 ± 0.60 86.85 ± 0.64 77.64 ± 2.53 81.64 ± 1.40 54.98 73.89 63.04 23.46 31.53 26.90
CodeT5P+Our RNN Embedding 93.61 ± 1.09 89.35 ± 0.83 91.37 ± 0.49 60.33 ± 3.54 76.29 ± 0.76 67.31 ± 1.54 49.24 51.27 50.23 7.78 38.22 12.93

CodeT5P 90.50 ± 1.97 84.70 ± 1.19 87.91 ± 0.67 18.79 ± 1.61 66.90 ± 2.63 29.45 ± 1.87 58.18 61.15 59.63 1.74 56.37 3.38
CodeT5+Our RNN Embedding 95.91 ± 0.37 89.11 ± 0.45 92.72 ± 0.28 74.01 ± 5.82 69.51 ± 3.20 71.94 ± 3.53 52.38 49.04 50.66 18.79 26.75 22.08

CodeT5 94.30 ± 0.49 84.57 ± 0.66 89.30 ± 0.35 18.15 ± 0.53 68.30 ± 1.31 28.70 ± 0.46 53.68 62.74 57.86 1.42 57.01 2.89
CodeBERT+Our RNN Embedding 92.15 ± 0.54 82.89 ± 0.70 87.17 ± 0.52 59.39 ± 0.79 67.84 ± 0.66 63.26 ± 0.50 60.07 55.10 57.48 3.89 45.54 7.18

CodeBERT 92.77 ± 0.68 77.03 ± 0.38 84.03 ± 0.34 17.48 ± 0.76 59.10 ± 1.82 27.05 ± 1.08 2.70 30.89 4.96
CodeGPT+Our RNN Embedding 91.25 ± 0.50 84.90 ± 0.48 87.91 ± 0.39 32.54 ± 0.72 67.34 ± 0.59 43.88 ± 0.35 62.13 33.44 43.48 3.32 31.21 6.01

CodeGPT 57.59 ± 2.37 17.05 ± 1.77 26.20 ± 2.06 14.36 ± 1.11 10.11 ± 1.45 11.63 ± 0.93 64.37 17.83 27.93 2.40 11.46 3.96
GraphCodeBERT 50.11 ± 4.29 27.03 ± 3.10 35.12 ± 3.81 10.59 ± 3.13 26.34 ± 2.94 15.08 ± 3.58 66.36 45.22 53.79 1.66 53.15 3.21

LineVul 89.00 ± 0.24 78.47 ± 0.34 83.15 ± 0.13 - - - 67.86 30.25 41.85 - - -
VELVET 92.10 ± 1.38 81.60 ± 1.54 86.51 ± 0.30 38.19 ± 1.31 73.50 ± 1.63 50.26 ± 0.75 51.06 46.84 48.86 3.31 38.71 6.10
LineVD - - - 27.04 ± 2.59 53.30 ± 3.23 36.00 ± 3.06 - - - 3.24 37.07 5.95
ReGVD 76.82 ± 0.03 50.36 ± 0.03 61.09 ± 0.01 - - - 59.87 58.92 59.39 - - -
Devign 72.29 ± 0.03 50.24 ± 0.16 59.28 ± 0.16 - - - 50.95 68.47 58.42 - - -
ICVH 77.44 ± 5.58 30.62 ± 2.95 43.50 ± 3.46 21.69 ± 1.54 41.86 ± 4.37 28.64 ± 2.09 56.99 50.64 53.63 2.32 50.64 4.44

TextCNN 86.50 ± 11.96 58.25 ± 19.38 69.62 ± 19.08 14.12 ± 4.03 53.67 ± 13.74 22.70 ± 1.67 57.29 52.55 54.82 2.00 50.96 3.84

TABLE III
TRAINING TIME OF OUR DEEPVULMATCH AND BASELINE METHODS.

Methods Training Time
DeepVulMatch 17 hours 15 minutes
LineVul 9 hours 53 minutes
VELVET 3 hours 27 minutes
LineVD 3 hours 4 minutes
ReGVD 5 hours 4 minutes
Devign 9 hours 4 minutes
ICVH 0 hour 33 minutes
TextCNN 4 hours 39 minutes
CodeT5 17 hours 5 minutes
CodeT5P 17 hours 10 minutes
CodeBERT 16 hours 43 minutes
CodeGPT 16 hours 10 minutes
GraphCodeBERT 20 hours 30 minutes

TABLE IV
(RQ2 RESULTS) WE COMPARE OUR PROPOSED METHOD TO OTHER

VARIANTS TO INVESTIGATE THE IMPACT OF THE INDIVIDUAL COMPONENTS.
THE METRICS ARE REPORTED AS PERCENTAGES.

Function Level Line LevelMethods Pre Re F1 Pre Re F1
Dataset Big-Vul Dataset

DEEPVULMATCH (Ours) 97.66 89.83 93.58 86.80 77.96 82.14
w/o RNN emb (mean pooling) 98.49 86.00 91.83 90.40 67.89 77.54
w/o RNN emb (max pooling) 96.53 89.95 93.13 79.70 76.40 78.02

w/o codebook & matching 45.91 86.60 60.00 28.77 51.57 36.94
wt 50 centroids 23.95 98.21 38.51 16.92 86.13 28.28
wt 100 centroids 98.13 87.92 92.74 88.14 74.98 81.03

wt 150 centroids (ours) 97.66 89.83 93.58 86.80 77.96 82.14
wt 200 centroids 96.69 90.91 93.71 83.44 80.02 81.69
wt 400 centroids 99.05 62.32 76.51 81.91 70.47 75.76

TABLE V
(RQ2 RESULTS) THE LINE-LEVEL PERFORMANCE COMPARISON BETWEEN

THE TOKEN EMBEDDING AND OUR RNN LINE EMBEDDING.

Line Level
<= 512 Tokens >512 TokensMethods

Pre Re F1 Pre Re F1
Dataset Big-Vul Dataset

CodeT5P+Our RNN Embedding 69.62 70.75 70.18 66.03 78.33 71.66
CodeT5P 24.42 83.63 37.80 14.36 54.52 22.73

CodeT5+Our RNN Embedding 79.72 69.17 74.07 77.67 63.77 70.04
CodeT5 22.82 83.38 35.83 14.33 55.72 22.79

CodeBERT+Our RNN Embedding 64.26 70.89 67.41 55.41 65.18 59.90
CodeBERT 24.53 78.71 37.41 14.94 50.32 23.04

CodeGPT+Our RNN Embedding 54.45 62.24 58.09 24.96 71.78 37.03
CodeGPT 16.21 18.14 17.12 8.25 2.36 3.66

Fig. 7. The t-SNE visualization of vulnerability vectors and centroids.

and matching vulnerability patterns. We compare our approach
with an identical variant that does not utilize OT and VQ.
Thirdly, our OT process requires us to define k (i.e., the
number of vulnerability centroids) to initialize the centroid
representations before aggregating similar vulnerability vectors
into these centroids. Thus, we analyze the effect of k on
the performance of our approach. We compare our approach
(k = 150) with other variants where k takes different values,
specifically k = [50, 100, 200, 400].

In Section III-B, we noted that our embedding method sup-
ports inputs up to 3,100 tokens—far beyond the standard 512.
In theory, this should improve performance on long sequences.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

To evaluate this, we compare the line-level performance of
four language models (CodeT5 [56], CodeT5P [55], CodeBERT
[36], CodeGPT [57]) using standard 512-token embeddings
with our line embeddings, reporting results separately for inputs
shorter than 512 tokens and those 512 tokens or longer.

In DEEPVULMATCH, we collected over 6,000 vulnerability
vectors from the training data. Matching all patterns at inference
is computationally impractical, so we use optimal transport
(OT) to aggregate similar vectors—those close in Euclidean
space—into representative centroids. In theory, each centroid
should represent a group of similar vulnerability vectors. To
verify this, we use t-SNE to visualize whether each centroid
corresponds to a coherent cluster of vectors. The goal is for
vectors and centroids to converge (Figure 3), minimizing the
Wasserstein distance [12] as defined in Equation 2.
Result. The results of our ablation study are presented in
Table IV. Our RNN line embedding approach further
improves the performance of mean and max pooling by
0.45%-1.75% on the function-level F1 score and 4.12%-
4.6% on the line-level F1 score. The max pooling would
lead to information loss since it considers the maximum
token embedding for each line, discarding all other token
embeddings in the sequence. While the mean pooling considers
all token embeddings, it treats all the token embeddings
equally regardless of their importance or relevance to the
line they belong where the prominent token features could
be disregarded.

In contrast, our RNN line embedding approach offers several
advantages. Firstly, it learns token features at each time step,
allowing for a more nuanced understanding of the code line.
Additionally, unlike mean and max pooling, our RNN-based
approach retains more information from the entire sequence,
thereby capturing a richer representation of the code line.
Lastly, by considering the sequential nature of the input tokens,
our RNN model can better capture contextual dependencies
and relationships within the line. The results confirm the
effectiveness of our RNN line embedding method, indicating
that it is more effective in summarizing token embeddings.

Our main components, OT and VQ for learning and
matching vulnerability patterns, significantly improve the
variant, “w/o codebook & matching”, by 33.58% on the
function-level F1 score and 45.2% on the line-level F1
score. This underscores the importance of these components
in achieving high-performance levels. The results suggest
that OT and VQ play crucial roles in learning our proposed
vulnerability codebook, which is responsible for retaining
and leveraging the vulnerability patterns information present
in vulnerable functions. This information is then utilized to
identify vulnerable lines effectively during the vulnerability-
matching inference. The results confirm our design decision of
leveraging OT and VQ to effectively aggregate vulnerability
vectors into patterns and match those patterns during inference.

The lower section of Table IV illustrates the impact of
the number of vulnerability centroids (k) on our approach.
The results demonstrate that our approach attains favorable
line-level F1 scores for k ∈ [100, 150, 200]. Thus, in our
DEEPVULMATCH approach, we empirically set k = 150
as it produces the optimal line-level F1 score. Notably, k

represents a crucial factor, where a small value of k (e.g., 50)
may result in unsatisfactory performance due to the grouping
of too many vulnerability vectors together, resulting in an
inadequate representation of each pattern. Conversely, a large
value of k (e.g., 400) leads to a substantial embedding space
of our codebook, making it challenging to update during the
backward process. The results confirm the effectiveness of
selecting k = 150 as the optimal value for the number of
vulnerability centroids (k) in our approach.

As shown in Table V, our line embedding helps the four
LMs achieve the best overall performance for both short
and long functions. In particular, our approach substantially
enhances the line-level F1 scores, increasing from 23% to 72%
for CodeT5P, from 23% to 70% for CodeT5, from 23% to
60% for CodeBERT, and from 4% to 37% for CodeGPT. The
results validate the effectiveness of our RNN line embedding
approach in accurately identifying vulnerable lines within long
functions.

Figure 7 depicts the t-SNE visualization of our vulnerability
vectors (depicted as blue dots) and vulnerability centroids
(depicted as orange dots), both before and after our primary
training phase outlined in Section III-D3. The upper section
illustrates the vulnerability vectors and randomly initialized
centroids before the optimal transport (OT) process. In contrast,
the lower section showcases the learned vulnerability vectors
and their associated centroids following the OT process. This
visualization validates that our proposed OT process consoli-
dates closely related vulnerability vectors into representative
centroids within the vector space.

TABLE VI
(DISCUSSION) THE COMPARISON BETWEEN OUR APPROACH WITH

RANDOMLY INITIALIZED VULNERABILITY CENTROIDS AND OUR APPROACH
WITH OPTICS CLUSTERING ALGORITHM TO DETERMINE THE NUMBER OF

VULNERABILITY CENTROIDS.

Function Level Line LevelMethods Pre Re F1 Pre Re F1
Dataset Big-Vul Dataset

DEEPVULMATCH 97.66 89.83 93.58 86.80 77.96 82.14
DEEPVULMATCH+ OPTICS Clustering 95.80 89.95 92.78 82.13 76.47 79.20

V. DISCUSSION

A. Automatic Centroid Selection Using OPTICS Clustering

In Section IV, we evaluated the performance of DEEP-
VULMATCH and conducted an ablation study to support
our design choices. A key limitation is the manual tuning
required to determine the optimal number of centroids in our
vulnerability codebook, which were empirically set to 150
and randomly initialized before applying optimal transport
(OT) as described in Section III-D2. This process can be
computationally expensive, especially for larger datasets. To
address this, we explore using OPTICS (Ordering Points
To Identify the Clustering Structure) [62]—a density-based
clustering algorithm that adapts to varying cluster shapes and
sizes without requiring a predefined number of clusters. In
this section, we evaluate the feasibility of using OPTICS to
automatically determine the number of clusters and initialize
centroids, replacing the fixed set of 150.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

As shown in Table VI, our approach achieves an F1 score of
94% and 82% at the function and line level predictions, respec-
tively. Notably, DEEPVULMATCH+OPTICS Clustering also
achieves comparable results, with F1 scores of 93% and 79% at
the function and line levels, respectively. While the performance
of DEEPVULMATCH+OPTICS Clustering is slightly lower than
that of DEEPVULMATCH with randomly initialized centroids,
it offers the advantage of automatically determining the ideal
number of clusters without the need for empirical tuning.
This can save computational resources, particularly for large-
scale datasets. The OPTICS clustering algorithm identified
a total of 115 clusters, consistent with the findings of our
ablation study, suggesting that 100-200 centroids are optimal
for our studied dataset. These results validate the effectiveness
of our DEEPVULMATCH approach when combined with the
OPTICS clustering algorithm, which automatically identifies
vulnerability centroids for the subsequent OT process.

TABLE VII
(DISCUSSION) THE PERFORMANCE COMPARISON BETWEEN OUR

DEEPVULMATCH APPROACH AND GPT-4.1.

Function Level Line LevelMethods Pre Re F1 Pre Re F1
Dataset Big-Vul Dataset

DEEPVULMATCH (Ours) 97.66 89.83 93.58 86.80 77.96 82.14
CoT + GPT-4.1 7.14 60.00 12.77 3.85 16.67 6.25

B. Comparison with Prompting an LLM

Recent advances in large language models (LLMs) have
demonstrated strong performance on various code-related
tasks. In particular, OpenAI’s GPT-4.1 achieves 54.6% on
the SWE-bench Verified benchmark [63], making it one of the
leading models for software engineering tasks, outperforming
GPT-4o and GPT-4.5 [64]. However, it remains unclear whether
such general-purpose LLMs can effectively handle our dual-
granularity vulnerability detection task, which requires both
function- and line-level reasoning.

To investigate this, we compared our DEEPVULMATCH ap-
proach with GPT-4.1 using over 18,000 test samples from
the Big-Vul [16] dataset. We adopted the chain-of-thought
(CoT) prompting strategy [65] to prompt GPT-4.1 and perform
the dual-granularity vulnerability detection task. As shown in
Table VII, GPT-4.1 achieved only 12.77% and 6.25% F1 at the
function and line levels, respectively. These results align with
prior studies on ChatGPT’ vulnerability prediction limitations
[45], suggesting that fine-tuning remains necessary for such
domain-specific, security-critical tasks.

While our method could, in principle, be combined with
an LLM like GPT-4.1, doing so would require substantial
computational resources, as such models typically contain
hundreds of billions of parameters. In contrast, our approach
uses only 0.012% of the parameters of GPT-4, making it over
8,000× more parameter-efficient, while still delivering strong
performance across both granularities. This underscores its
practical value as a lightweight and efficient alternative to
fine-tuning LLMs for dual-granularity vulnerability detection.

VI. THREATS TO VALIDITY

Threats to the construct validity relate to the data quality
and dataset selection. Our DEEPVULMATCH approach, similar
to other data-driven tasks, relies on data quality, and the
presence of noisy labels can impact the model’s performance.
Croft et al.[66] conducted a systematic study to assess data
quality, evaluating state-of-the-art vulnerability datasets such
as Big-Vul [16], D2A [17], and Devign [33]. They analyzed
the datasets manually to assess the accuracy of vulnerability
labels. Among the three datasets, Devign achieved the highest
label correctness. However, Devign only provides function-
level labels, which are not compatible with our study’s focus
on line-level vulnerability detection. It is worth noting that
other common vulnerability datasets, such as Reveal [34] and
DiverseVul [60], also only consist of function-level labels,
which are not suitable for our study.

The Big-Vul dataset is one of the largest vulnerability
datasets consisting of line-level vulnerability labels. It has been
utilized in recent studies focusing on line-level vulnerability
prediction [6, 7, 18]. The line-level labels in Big-Vul were
derived from parsing code changes before and after addressing
a vulnerability. However, the presence of noisy labels within the
dataset may introduce bias and compromise the generalizability
of our DEEPVULMATCH approach. To mitigate this threat,
we leveraged an additional experimental dataset, the D2A
dataset [17], which also provides line-level labels. By including
the D2A dataset, which has been used in previous line-level
vulnerability detection studies [8], we enhance the robustness
of our approach against potential biases introduced by noisy
labels in the Big-Vul dataset.

Threats to the internal validity relate to hyperparameter
settings in our DEEPVULMATCH approach. In particular,
determining the number of vulnerability centroids, k, before
the optimal transport (OT) process is crucial for our DEEPVUL-
MATCH approach. We empirically initialize 150 centroids for
the OT process, as shown in Table IV. However, this parameter
k significantly impacts the performance of our approach, as
discussed in our ablation study (RQ2). Empirically determining
k could be impractical and computationally intensive for future
studies with large-scale datasets. To address this threat, we
explore using a clustering algorithm to automatically determine
an optimal k in our extended discussion in Section V-A. The
results validate that our DEEPVULMATCH approach, combined
with the OPTICS clustering algorithm [62], can determine k
while maintaining comparable performance, outperforming all
other baselines in Table II.

Threats to the external validity relate to the generalizability
of our DEEPVULMATCH approach. We conduct our experiment
using Big-Vul [16] and D2A [17] datasets consisting of a
large amount of C/C++ functions parsed from real-world
software projects. However, our DEEPVULMATCH method
is not necessarily to generalize to other datasets. To mitigate
this threat, we open-source our experimental dataset and model
training script in our public replication package available at
https://github.com/awsm-research/DeepVulMatch. Nevertheless,
other vulnerability datasets can be explored in future work.

https://github.com/awsm-research/DeepVulMatch

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

VII. CONCLUSION

This paper presents a novel vulnerability-matching method
for function and line-level vulnerability detection (VD). Our
approach capitalizes on the vulnerability patterns present
in vulnerable programs, which are typically overlooked in
deep learning-based VD. Specifically, we collect vulnerability
patterns from the training data and learn a more compact vul-
nerability codebook from the pattern collection using optimal
transport (OT) and vector quantization. During inference, the
codebook matches all learned patterns and detects potential
vulnerabilities within a given program. The evaluation results
demonstrate that our method surpasses other competitive
baseline methods, while our ablation study confirms the
soundness of our approach. While our method demonstrates
strong performance, one notable limitation is the manual tuning
required to determine the optimal number of centroids in the
vulnerability codebook. This parameter is highly dependent on
the characteristics of the dataset and the properties of the pre-
trained embeddings used. Although our experiments indicate
that using OPTICS (Ordering Points To Identify the Clustering
Structure) can yield performance comparable to manual tuning,
this remains a semi-automated workaround. Future research
could explore fully automated techniques to determine the
number of centroids, potentially integrating optimal transport
with adaptive clustering mechanisms.

ACKNOWLEDGMENT

C. Tantithamthavorn was partially supported by the ARC’s
DECRA Fellowship (DE200100941).

REFERENCES

[1] Kyle, “Example c++ vulnerable function - unpremulskimage-
topremul,” https://github.com/kwyatt/webrtc_src_third_party/commit/
a87bf9b1dbdc6e0fb80091a901ab7d5a05d64ecd, 2016.

[2] GoPro, “Example c vulnerable function - isvalid-
size,” https://github.com/gopro/gpmf-parser/commit/
341f12cd5b97ab419e53853ca00176457c9f1681, 2019.

[3] H. Booth, D. Rike, and G. Witte, “The national vulnerability
database (nvd): Overview,” 2013-12-18 2013. [Online]. Available:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915172

[4] NIST, “Apache struts vulnerability (cve-2021-31805),” https://nvd.nist.
gov/vuln/detail/CVE-2021-31805, 2022.

[5] R. Croft, D. Newlands, Z. Chen, and M. A. Babar, “An empirical study of
rule-based and learning-based approaches for static application security
testing,” in Proceedings of the 15th ACM/IEEE international symposium
on empirical software engineering and measurement (ESEM), 2021, pp.
1–12.

[6] D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: statement-level
vulnerability detection using graph neural networks,” in Proceedings
of the 19th International Conference on Mining Software Repositories
(MSR), 2022, pp. 596–607.

[7] M. Fu and C. Tantithamthavorn, “Linevul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories (MSR), 2022, pp. 608–620.

[8] Y. Ding, S. Suneja, Y. Zheng, J. Laredo, A. Morari, G. Kaiser, and
B. Ray, “Velvet: a novel ensemble learning approach to automatically
locate vulnerable statements,” in 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2022, pp. 959–970.

[9] CWE, “2023 cwe top 25 most dangerous software weaknesses,” https:
//cwe.mitre.org/top25/archive/2023/2023_top25_list.html, 2023.

[10] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation
learning,” Advances in neural information processing systems (NeurIPS),
vol. 30, 2017.

[11] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouvé, and
G. Peyré, “Interpolating between optimal transport and mmd using
sinkhorn divergences,” in The 22nd International Conference on Artificial
Intelligence and Statistics. PMLR, 2019, pp. 2681–2690.

[12] C. Villani, “Optimal transport: Old and new,” 2008.
[13] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using

siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.
[14] Checkmarx, “Checkmarx static application security testing,” https:

//checkmarx.com/, 2023.
[15] D. A. Wheeler, “Flawfinder,” 2023. [Online]. Available: https:

//dwheeler.com/flawfinder/
[16] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability

dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories (MSR),
2020, pp. 508–512.

[17] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,
A. Morari, and Z. Su, “D2a: A dataset built for ai-based vulnerability
detection methods using differential analysis,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering
in Practice (ICSE-Szheng2021d2aEIP). IEEE, 2021, pp. 111–120.

[18] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292–303.

[19] S. Pujar, Y. Zheng, L. Buratti, B. Lewis, Y. Chen, J. Laredo, A. Morari,
E. Epstein, T. Lin, B. Yang et al., “Analyzing source code vulnerabilities
in the d2a dataset with ml ensembles and c-bert,” Empirical Software
Engineering, vol. 29, no. 2, p. 48, 2024.

[20] G. Monge, “Mémoire sur la théorie des déblais et des remblais,” Mem.
Math. Phys. Acad. Royale Sci., pp. 666–704, 1781.

[21] M. Thorpe, “Introduction to optimal transport,” Lecture Notes, vol. 3,
2019.

[22] C. Laclau, I. Redko, B. Matei, Y. Bennani, and V. Brault, “Co-clustering
through optimal transport,” in International conference on machine
learning. PMLR, 2017, pp. 1955–1964.

[23] E. Del Barrio, J. A. Cuesta-Albertos, C. Matrán, and A. Mayo-Íscar,
“Robust clustering tools based on optimal transportation,” Statistics and
Computing, vol. 29, pp. 139–160, 2019.

[24] Y. Yan, Z. Xu, C. Yang, J. Zhang, R. Cai, and M. K.-P. Ng, “An
optimal transport view for subspace clustering and spectral clustering,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38,
no. 15, 2024, pp. 16 281–16 289.

[25] Y. Liu, Z. Zhou, and B. Sun, “Cot: Unsupervised domain adaptation
with clustering and optimal transport,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2023, pp. 19 998–
20 007.

[26] X. Lu, H. Wang, W. Dong, F. Wu, Z. Zheng, and G. Shi, “Learning a
deep vector quantization network for image compression,” IEEE Access,
vol. 7, pp. 118 815–118 825, 2019.

[27] K. Chen and C.-G. Lee, “Incremental few-shot learning via vector
quantization in deep embedded space,” in International conference on
learning representations, 2021.

[28] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th IEEE
international conference on machine learning and applications (ICMLA).
IEEE, 2018, pp. 757–762.

[29] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detection,”
arXiv preprint arXiv:1801.01681, 2018.

[30] V. Nguyen, T. Le, T. Le, K. Nguyen, O. DeVel, P. Montague, L. Qu,
and D. Phung, “Deep domain adaptation for vulnerable code function
identification,” in The International Joint Conference on Neural Networks
(IJCNN), 2019.

[31] V. Nguyen, T. Le, O. De Vel, P. Montague, J. Grundy, and D. Phung,
“Dual-component deep domain adaptation: A new approach for cross
project software vulnerability detection,” Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2020.

[32] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske, “Vudenc:
vulnerability detection with deep learning on a natural codebase for
python,” Information and Software Technology, vol. 144, p. 106809,

https://github.com/kwyatt/webrtc_src_third_party/commit/a87bf9b1dbdc6e0fb80091a901ab7d5a05d64ecd
https://github.com/kwyatt/webrtc_src_third_party/commit/a87bf9b1dbdc6e0fb80091a901ab7d5a05d64ecd
https://github.com/gopro/gpmf-parser/commit/341f12cd5b97ab419e53853ca00176457c9f1681
https://github.com/gopro/gpmf-parser/commit/341f12cd5b97ab419e53853ca00176457c9f1681
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915172
https://nvd.nist.gov/vuln/detail/CVE-2021-31805
https://nvd.nist.gov/vuln/detail/CVE-2021-31805
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://checkmarx.com/
https://checkmarx.com/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

2022.
[33] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective

vulnerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems (NeurIPS), vol. 32, 2019.

[34] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet,” IEEE Transactions on Software
Engineering, 2021.

[35] V.-A. Nguyen, D. Q. Nguyen, V. Nguyen, T. Le, Q. H. Tran, and D. Phung,
“Regvd: Revisiting graph neural networks for vulnerability detection,” in
Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings, 2022, pp. 178–182.

[36] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[37] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training
code representations with data flow,” in International Conference on
Learning Representations, 2021.

[38] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2244–2258, 2021.

[39] RATS, “Rough auditing tool for security,” https://code.google.com/
archive/p/rough-auditing-tool-for-security/, 2023.

[40] V. Nguyen, T. Le, O. De Vel, P. Montague, J. Grundy, and D. Phung,
“Information-theoretic source code vulnerability highlighting,” in 2021
International Joint Conference on Neural Networks (IJCNN). IEEE,
2021, pp. 1–8.

[41] B. Zhang, X. Zhi, M. Wang, R. Ren, and J. Dong, “Enhancing java web
application security: Injection vulnerability detection via interprocedural
analysis and deep learning,” IEEE Transactions on Reliability, 2025.

[42] Q. Huang, Y. He, Z. Xing, M. Yu, X. Xu, and Q. Lu, “Enhancing fine-
grained smart contract vulnerability detection through domain features
and transparent interpretation,” IEEE Transactions on Reliability, 2025.

[43] H. Chu, P. Zhang, H. Dong, Y. Xiao, and S. Ji, “Deepfusion: Smart
contract vulnerability detection via deep learning and data fusion,” IEEE
Transactions on Reliability, 2024.

[44] B. Steenhoek, H. Gao, and W. Le, “Dataflow analysis-inspired deep
learning for efficient vulnerability detection,” in 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2023, pp. 166–178.

[45] M. Fu, C. Tantithamthavorn, V. Nguyen, and T. Le, “Chatgpt for
vulnerability detection, classification, and repair: How far are we?” arXiv
preprint arXiv:2310.09810, 2023.

[46] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” arXiv preprint
arXiv:2203.03850, 2022.

[47] H. Shu, M. Fu, J. Yu, D. Wang, C. Tantithamthavorn, J. Chen, and
Y. Kamei, “Large language models for multilingual vulnerability detection:
How far are we?” arXiv preprint arXiv:2506.07503, 2025.

[48] OpenAI, “Chatgpt,” https://openai.com/blog/chatgpt, 2022.
[49] Google, “Bard,” https://bard.google.com/, 2023.
[50] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,

H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[51] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 1715–1725.

[52] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” in Advances in Neural Information Processing Systems,
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger,
Eds., vol. 26. Curran Associates, Inc., 2013.

[53] T. Nguyen, T. Le, N. Dam, Q. H. Tran, T. Nguyen, and
D. Phung, “Tidot: A teacher imitation learning approach for domain
adaptation with optimal transport,” in Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, Z.-H.
Zhou, Ed. International Joint Conferences on Artificial Intelligence

Organization, 8 2021, pp. 2862–2868, main Track. [Online]. Available:
https://doi.org/10.24963/ijcai.2021/394

[54] N. Ho, X. Nguyen, M. Yurochkin, H. H. Bui, V. Huynh, and D. Phung,
“Multilevel clustering via wasserstein means,” in International conference
on machine learning. PMLR, 2017, pp. 1501–1509.

[55] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi,
“Codet5+: Open code large language models for code understanding and
generation,” arXiv preprint arXiv:2305.07922, 2023.

[56] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in the Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2021, pp. 8696–8708.

[57] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,
D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine learning
benchmark dataset for code understanding and generation,” arXiv preprint
arXiv:2102.04664, 2021.

[58] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp. 590–604.

[59] Y. Chen, “Convolutional neural network for sentence classification,”
Master’s thesis, University of Waterloo, 2015.

[60] Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner, “Diversevul: A
new vulnerable source code dataset for deep learning based vulnerability
detection,” in Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, 2023, pp. 654–668.

[61] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in
International Conference on Learning Representations, 2018.

[62] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” ACM Sigmod record,
vol. 28, no. 2, pp. 49–60, 1999.

[63] OpenAI, “Introducing swe-bench verified,” https://openai.com/index/
introducing-swe-bench-verified/, 2024.

[64] ——, “Introducing gpt-4.1 in the api,” https://openai.com/index/gpt-4-1/,
2025.

[65] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[66] R. Croft, M. A. Babar, and M. M. Kholoosi, “Data quality for software
vulnerability datasets,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 121–133.

https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://doi.org/10.24963/ijcai.2021/394
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/gpt-4-1/

	Introduction
	Background & Related Work
	Optimal Transport
	Vector Quantization
	Related Work
	Deep Learning-based Vulnerability Detection
	Large Language Models for Vulnerability Detection

	Approach
	Problem Statement
	Line Embedding Using RNN
	Training of Warm-Up Phase
	Quantizing Vulnerability Vectors: Optimal Transport and Subsequent Main Training Phase
	Collect Vulnerability Vectors from Vulnerable Functions
	Learn to Transport Vulnerability Vectors to Vulnerability Centroids
	Main Training Phase

	Vulnerability Detection Through Explicit Vulnerability Patterns Matching

	Experimental Design and Results
	Research Questions
	Baseline Approaches
	Language Models for code
	Transformer-based VD
	GNN-based VD
	Information Theory-based and CNN-based VD

	Experimental Datasets
	Parameter Settings and Model Training

	Discussion
	Automatic Centroid Selection Using OPTICS Clustering
	Comparison with Prompting an LLM

	Threats to Validity
	Conclusion

