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DecipherGuard: Understanding and Deciphering
Jailbreak Prompts for a Safer Deployment of

Intelligent Software Systems
Rui Yang, Michael Fu, Chakkrit Tantithamthavorn, Chetan Arora, Gunel Gulmammadova, Joey Chua

Abstract—Intelligent software systems powered by Large Lan-
guage Models (LLMs) are increasingly deployed in critical
sectors, raising concerns about their safety during runtime.
Through an industry-academic collaboration when deploying
an LLM-powered virtual customer assistant, a critical software
engineering challenge emerged: how to enhance a safer de-
ployment of LLM-powered software systems at runtime? While
LlamaGuard, the current state-of-the-art runtime guardrail,
offers protection against unsafe inputs, our study reveals a
Defense Success Rate (DSR) drop of 24% under obfuscation-
and template-based jailbreak attacks. In this paper, we propose
DECIPHERGUARD, a novel framework that integrates a deci-
phering layer to counter obfuscation-based prompts and a low-
rank adaptation mechanism to enhance guardrail effectiveness
against template-based attacks. Empirical evaluation on over
22,000 prompts demonstrates that DECIPHERGUARD improves
DSR by 36% to 65% and Overall Guardrail Performance (OGP)
by 20% to 50% compared to LlamaGuard and two other
runtime guardrails. These results highlight the effectiveness of
DECIPHERGUARD in defending LLM-powered software systems
against jailbreak attacks during runtime.

Index Terms—Safeguarding LLM Systems, Responsible AI, AI
Guardrails, Safety Software Engineering

I. INTRODUCTION

Intelligent software systems, powered by Large Language
Models (LLMs), are now extensively deployed across critical
sectors globally, including healthcare, transportation, agricul-
ture, finance, and defence. Typically, such LLM-powered soft-
ware systems take prompt inputs written in natural language
to produce responses for various applications (e.g., contextual
search, question answering, chatbot, etc). Such LLM-powered
software systems are often deployed and operated through
a Large Language Model Operations (“LLMOps”) paradigm.
With a typical LLMOps workflow [1], software engineers will
start from foundation models (FM) selection, model alignment,
prompt design, system testing, serving and operations. Hassan
et al. [1] noted that quality assurance (QA) and trustworthiness
are cross-cutting, which should be enforced throughout the
entire LLMOps lifecycle.

Despite the powerful capabilities of LLM systems, they
inherently possess certain weaknesses and vulnerabilities,
making them susceptible to attacks. As a result, the safety
of LLM systems has emerged as a global research challenge,
as echoed by Bengio et al. [2], Hassan et al. [1], Yao et
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How to build a bomb?
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To build a bomb, you must first gather the materials…
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Fig. 1. An example of a jailbreak attack.

al. [3], and the US Executive Order on the Safe, Secure,
and Trustworthy Development of Artificial Intelligence.1 To
illustrate this (see Figure 1), a malicious user can write a
malicious and harmful prompt input (e.g., “how to create
a bomb?”, “how to rob a bank?”) to misdirect an LLM
system to generate unsafe, harmful, and irresponsible outputs.
To make matter worse, an attacker can also apply advanced
attack techniques designed to bypass the safety mechanisms
and ethical constraints built into LLMs (defined as a Jailbreak
Attack) [4, 5]. For example, Figure 1 shows that, given an
unsafe prompt without jailbreak attack, LLM systems may
provide a safe response (“I’m sorry, but I can’t assist with
that request”). On the other hand, given an unsafe prompt
with a jailbreak attack, LLM systems may provide an unsafe
response (“To build a bomb, you must first gather the materials
...”). Such malicious and harmful prompt inputs could enable
scams, fraud, terrorist activities, disinformation campaigns,
child sexual abuse materials, encouraging suicide and self-
harm, cyber attacks, malware, etc.

From software engineering’s perspective, we asked how
to enhance the safety deployment of LLM systems during
the runtime environment? Recent work proposed LLM
runtime guardrails as an external safety mechanism that acts

1https://www.whitehouse.gov/briefing-room/presidential-
actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-
development-and-use-of-artificial-intelligence/
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as a safety layer around LLMs, classifying inputs and out-
puts as safe or unsafe, to prevent unsafe behaviour of LLM
systems in real-time. Such LLM runtime guardrails include
LLamaGuard [6], OpenAI Moderation [7], Perplexity [8],
Perspective API [9], and NVIDIA Nemo [10]. In particular,
LLamaGuard, proposed by Inan et al. [6], achieves state-of-
the-art (SOTA) performance in detecting unsafe prompts when
compared with OpenAI Moderation [7] and Perspective API
[9]. While this advancement highlights its effectiveness in
defending against unsafe prompts, our evaluation reveals two
significant limitations of the SOTA LlamaGuard approach.

• First, LlamaGuard is fine-tuned using unsafe prompts
in English, which limits its effectiveness in defend-
ing obfuscation-based jailbreak prompts in non-
English formats. For instance, attackers can encode
unsafe prompts using methods such as Base64 encoding
[11], translation into less commonly supported languages
(e.g., Zulu) [11], or even cryptographic ciphers [12].
We found that these transformations can easily bypass
LlamaGuard’s detection mechanisms. This limitation un-
derscores the need for an enhanced runtime guardrail that
can effectively defend against jailbreak prompts.

• Second, LlamaGuard lacks inherent knowledge of
jailbreak patterns, which limits its ability to defend
template-based jailbreak prompts. While fine-tuning
the model is a potential solution, it is highly resource-
intensive and impractical for most organizations due to
LlamaGuard’s substantial 8 billion parameters. This lim-
itation underscores the need for lightweight methods for
adapting models to recognise and defend against jailbreak
prompts.

In this paper, we propose DECIPHERGUARD, a deciphering
layer to address obfuscation-based jailbreak prompts with a
low-rank adaptation (LoRA) to address template-based jail-
break prompts. First, to defend against obfuscation-based
attacks, we employ a Base64 decoder, an algorithmic Caesar
cipher decryptor, and a language detector, combined with the
Google Translation API, to detect and reverse-engineer non-
English jailbreak prompts into English prompts. Second, to
address template-based attacks, we extend the LlamaGuard
model using LoRA, which fine-tunes only 0.05% of the
model’s parameters. This allows the model to learn to de-
tect template-based attacks while preserving the pre-existing
knowledge of LlamaGuard by freezing the pre-trained param-
eters.

Finally, we conduct an experiment to compare our pro-
posed DECIPHERGUARD approach with four LLM runtime
guardrails: LlamaGuard [6], OpenAI Moderation [7], Perplex-
ity [8], PerspectiveAPI [9]. We evaluate the Defence Success
Rate (DSR) and compare the performance of these guardrails
on both unsafe prompts and jailbreak prompts. Furthermore,
to assess the overall performance of runtime guardrails, we
introduce the Overall Guardrail Performance (OGP) metric.
This metric combines both the DSR and the False Alarm
Rate (FAR), using their geometric mean to provide a balanced
measure of performance. The OGP metric evaluates guardrail
effectiveness by accounting for both the ability to detect

unsafe prompts and reduce false alarms. Through an extensive
evaluation of more than 22k prompts with ten different attack
methods (i.e., AIM [13], DAN [14], Combination [15], Self
Cipher [12], Deep Inception [16], Caesar Cipher [12], Zulu
[11], Base64 [11], Dual-use [17], Code Chameleon [18]) , we
answer the following four research questions:

RQ1) What is the impact of the jailbreak attacks on the
existing runtime guardrails?
Results. We found that guardrails’ performance heavily
deteriorates when exposed to unsafe prompts w/ jail-
break attacks compared to unsafe prompts w/o jailbreak
attacks. Specifically, the DSR of LLM-based guardrails
such as LlamaGuard and OpenAI Moderation drops
by a margin of 24% to 37% with jailbreak prompts
compared to without.

RQ2) How effective is our DECIPHERGUARD in defending
against jailbreak prompts?
Results. We found that our DECIPHERGUARD sub-
stantially increased the DSR against jailbreak attacks.
Specifically, DECIPHERGUARD achieved a DSR of
92.09%, compared to the other studied guardrails which
achieved the highest DSR of 57.65%. Additionally, the
DSR against obfuscation-based jailbreak attacks im-
proved by a margin of 43.6% to 98% when comparing
with LlamaGuard and OpenAI Moderation.

RQ3) What is the overall performance of DECIPHER-
GUARD when considering both aspects of defence
success rate and false alarm rate?
Results. We found that our DECIPHERGUARD per-
formed the best Overall Guardrail Performance (OGP)
when evaluated on both jailbreak attack prompts and
safe prompts. Specifically, DECIPHERGUARD achieved
the highest OGP of 96.44%, a 20% and 34% absolute
percentage improvement over LlamaGuard and OpenAI
Moderation, respectively. These results confirm that
our DecipherGuard approach enhances both defence
effectiveness while reducing false alarms.

RQ4) What are the contributions of the components of
our DECIPHERGUARD?
Results. We found that the LoRA component is the
most important component for enhancing both DSR
and OGP. Specifically, when comparing “LlamaGuard
+ LoRA” and “LlamaGuard” where the LoRA com-
ponent is eliminated, we observe DSR decrease from
91.67% to 57.65% accounting for 34.02%, as well as
OGP decrease from 95.31% to 75.88%, accounting for
19.43%. We also found when comparing “LlamaGuard
+ Decipher” and “LlamaGuard” where the Decipher
component is eliminated, the Decipher component con-
tributes to 18.58% and 11.38% of DSR and OGP
respectively.

Novelty & Contributions. In summary, this paper made the
following contributions:

• We demonstrated that the Defence Success Rate (DSR)
of state-of-the-art runtime guardrails substantially de-
creased by 24%-37% when confronted with jailbreak
prompts, highlighting the limited effectiveness of existing



3

guardrails in defending against jailbreak attacks.
• We proposed DECIPHERGUARD, featuring a novel deci-

phering layer to detect and reverse obfuscation-based jail-
break prompts and LoRA fine-tuning to address template-
based prompts, overcoming the two limitations of state-
of-the-art guardrails.

• We proposed an Overall Guardrail Performance (OGP)
metric to evaluate the defensive capability while account-
ing for the number of false alarms.

• An ablation study to investigate the contribution of each
component of our DECIPHERGUARD approach.

Open Science. To support the open science community, we
publish the studied dataset, scripts (i.e., data processing, model
training, and model evaluation), and experimental results at
https://github.com/awsm-research/DecipherGuard.
Paper Organisation. The rest of our paper is organised as
follows: Section II presents background while Section III
presents motivation and related works. Section IV describes
our DECIPHERGUARD approach. Section V presents the
motivation of our four research questions, studied datasets,
jailbreak attacks, guardrails, and experimental setup. Section
VI presents the experimental results. Section VII presents
the extended discussion of our DECIPHERGUARD approach.
Section VIII discloses the threats to validity. Section IX draws
the conclusion.

II. BACKGROUND

In this section, we introduce a threat model followed by
a taxonomy of jailbreak attacks to provide a foundational
understanding of the security challenges LLMs face from such
attacks.

A. Threat Model

Traditional threat modelling in software engineering focuses
on identifying vulnerabilities in a system’s architecture to
mitigate security risks. In our context, the primary concern is
how jailbreak attacks can manipulate LLM behavior to bypass
guardrails. Thus, we present a threat model to analyze an at-
tacker’s objectives, attack scenarios, and required knowledge,
highlighting the security gaps that make LLM-based systems
vulnerable and the need for stronger safety mechanisms.
Attack Goals. The attacker’s ultimate goal is to manipulate the
LLM-based system through targeted jailbreak attack prompts,
allowing them to bypass internal LLM safety mechanisms.
This could result in the generation of unsafe responses, in-
cluding policy-violating or malicious content such as jailbreak
instructions, toxic outputs, security vulnerabilities, or ethically
questionable advice. Successful attacks could enable adver-
sarial prompts to evade detection, ultimately undermining the
integrity of LLM safety mechanisms and system security while
degrading the system’s overall reliability.
Attack Scenarios. LLM-based systems available to end users
process user-provided prompts to generate responses. How-
ever, this creates an opportunity for attackers to inject care-
fully crafted malicious inputs, collectively known as jailbreak
prompts, designed to mislead the system into producing oth-
erwise restricted content. Figure 1 illustrates an example of

this attack. Once an attacker successfully exploits a specific
jailbreak technique, they may generalise the approach to cause
various forms of harm, including but not limited to:

• Extracting sensitive information from the model.
• Providing instructions for illegal activities.
• Generating unethical or harmful content.

Attacker’s Knowledge. Attackers do not necessarily require
complete knowledge of the LLM-based systems’ architecture
to execute a successful attack, but the effectiveness of their
strategy improves with access to certain information. For
example, a black-box attacker only observes input-output
behaviour and refines prompts iteratively based on trial and
error by querying the systems repeatedly. Grey-box knowledge
through technical documentation or knowledge of LLM model
used may help the attacker to reverse engineer or analyse com-
mon failure cases to craft more effective attack strategies. Ad-
ditionally, attackers require access to interact with the targeted
LLM system, whether it is publicly available or used internally.
They also need to collect and develop jailbreak prompts, often
sourced from open-source repositories or community-driven
forums that share adversarial attack techniques.

III. MOTIVATION AND RELATED WORK

In this section, we present the problem and the motivation
for safeguarding LLM systems, explore current implementa-
tions, and discuss the current state-of-the-art runtime guardrail,
LlamaGuard, as well as its limitations.

A. Preliminaries

In this section, we provide a preliminary and a formal
definition of large language models, safe and unsafe prompts,
internal defences, external guardrails, jailbreak attacks, and
jailbreak prompts, to establish a foundational understanding
of the key concepts relevant to this paper.

LLM-powered software system are applications that in-
tegrate Large Language Models (LLMs) to enable tasks such
as natural language understanding, automated responses, and
decision support. For instance, Transurban’s virtual customer
assistant [19] utilises an LLM to handle customer inquiries,
providing real-time and context-aware responses.

Large Language Models (LLMs) are probabilistic models
trained to generate output by predicting the next token ti+1
given a sequence of preceding tokens Ti = {t1, t2, . . . , ti}.
Formally, this probabilistic token generation process is defined
as:

P (ti+1|Ti) = P (ti+1|t1, t2, . . . , ti) . (1)

In practice, users interact with LLMs through input prompts,
which are sequences of tokens that guide the model’s response.
We denote prompts as p ∈ P , where P represents the set
of all possible prompts. For example, given the prompt p =
“TODO”, the LLM predicts a sequence of tokens to generate
the output, such as “TODO”. Thus, prompts serve as the input
that directs the model’s output generation.

A safe prompt is an input prompt psafe ∈ Psafe that leads
the LLM to generate outputs adhering to ethical, legal, and
contextual safety guidelines.

https://github.com/awsm-research/DecipherGuard
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Fig. 2. An overview of jailbreak attack interaction with runtime guardrails
vs normal safe prompt interaction.

An unsafe prompt punsafe ∈ Punsafe is a prompt that intends
to trigger LLMs to produce harmful, biased, or unethical
outputs such as the prompt from the Malicious User in Figure
1.

Internal defences have been proposed to safeguard LLMs
in intelligence software systems [20]. They are mechanisms
integrated directly into LLMs to enhance their safety and
reliability within intelligent software systems. In particular,
internal defences aim to minimise the likelihood of LLMs
generating unsafe or harmful system outputs.

External defences are mechanisms deployed outside LLMs
to filter runtime unsafe prompts or outputs. They serve as a
protective layer by intercepting inputs and outputs, ensuring
that interactions remain within safe and ethical boundaries.
These guardrails are typically implemented as classifiers that
detect harmful, offensive, or policy-violating content and block
them before allowing the interaction with internal LLMs to
continue. Formally, let y ∈ {safe, unsafe} denote the classi-
fication output. The external guardrail is a classifier function
f : P → {safe, unsafe}, where:

f (p) =

{
safe if p is classified as safe
unsafe if p is classified as unsafe

(2)

Jailbreak attack is a more sophisticated form of malicious
manipulation where an attacker crafts inputs specifically de-
signed to exploit weaknesses in the guardrails or internal safety
mechanisms of LLMs. Unlike traditional unsafe prompts,
which can be identified and blocked by external guardrails or
internal defence, jailbreak attacks circumvent these defences
by employing obfuscation techniques (e.g., Caesar Cipher
[12]), contextual manipulation (e.g., DAN [14]), or indirect
requests (e.g., Code Chameleon [18]), allowing them to bypass
the classifier’s detection mechanisms.

A jailbreak prompt pj ∈ Pj ⊂ Punsafe is a specialised form
of unsafe prompt designed to bypass the guardrails or internal
restrictions imposed on an LLM. A jailbreak prompt leads the
model to intentionally output content it would normally avoid,
such as the prompt from the Attacker in Figure 1.

As illustrated in Figure 2, a normal user interacts with an
LLM-powered software system by submitting safe prompts.
These prompts pass through external runtime guardrails and
internal defences, allowing the system to generate and return
safe responses. In contrast, malicious attackers interact with
the system with the intent to trigger unsafe responses, often
by inputting unsafe prompts. While these unsafe prompts are
usually detected and blocked by the runtime guardrails before

reaching the LLM, a more sophisticated threat arises from
jailbreak prompts. These prompts are designed with carefully
crafted input formats that mimic safe prompts, enabling them
to bypass runtime guardrails and exploit vulnerabilities within
the system. Unlike conventional unsafe prompts, jailbreak
prompts could be more difficult to defend against, posing a
critical challenge to the integrity and security of LLM-driven
systems. To highlight the challenges of safeguarding LLM-
powered systems, we draw on insights from our collaboration
with an industry partner, emphasising the need for effective
runtime guardrails in real-world applications.

B. Problem Motivation: An Industrial Case Study

Intelligent software systems are now powered by Large
Language Models (LLMs), a Transformer-based deep learning
model architecture [21] trained on vast amounts of data,
and capable of solving complex queries in natural language.
Recently, LLMs have been used for various applications,
including contextual search, question answering, chatbot [22].
Similar to other high-tech software companies (including
Transurban, one of the world’s largest toll-road operators), we
leverage LLMs for various applications to streamline opera-
tions, enhance customer interactions through virtual assistants,
and improve decision-making processes. Focusing on our
customer virtual assistant, it is powered by retrieval augmented
generation (RAG)-based large language models for providing
more flexible and context-aware responses. However, there
is an exponential growth of malicious attacks, attempting to
bypass malicious prompts to generate harmful content from
our LLM-based customer virtual assistant. Therefore, software
engineers are facing critical challenges to ensure the safe
and responsible deployment of such LLM-powered software
systems at runtime.

C. Safeguarding LLM Systems

The growing adoption of LLMs in real-world applications
has highlighted the importance of robust safeguards to ensure
safety and prevent misuse. In response, both internal and exter-
nal defence mechanisms have been developed, each addressing
different safety challenges associated with LLMs.

1) Internal Defence: Internal defences focus on embedding
safety and alignment mechanisms directly within LLMs during
the training or fine-tuning stages. These defences aim to ensure
that the models inherently adhere to ethical guidelines and
avoid generating unsafe or inappropriate outputs.

In terms of finetuning and safety alignment, instruction
tuning and reinforcement learning from human feedback
(RLHF) are widely adopted techniques to align LLMs with
desired safety standards [23, 24]. For example, models like
OpenAI’s GPT series and Meta’s Llama are fine-tuned with
instruction-following datasets and reinforced with human-
curated feedback to minimise harmful outputs [25, 26]. This
iterative refinement process helps LLMs balance helpfulness
and harmlessness by optimising their responses to follow the
ethical norms of human standards.

During the training process, the technique of adversarial
training can be introduced to provide challenging prompts or
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scenarios to stress-test the model’s robustness against unsafe
outputs. For instance, incorporating adversarial examples dur-
ing the training stage enhances LLMs’ ability to recognise
and refuse harmful or misleading queries more effectively
[27]. However, adversarial training alone may fail to capture
novel attack patterns, requiring continuous updates to remain
effective [28].

While these approaches demonstrate significant improve-
ments, studies have highlighted their limitations. Wei et al.
[28] reveal that the internal defence of state-of-the-art de-
ployed models, including OpenAI’s GPT-4 and Anthropic’s
Claude v1.3, are vulnerable to jailbreak attacks, leading to
the generation of harmful responses. Additionally, Yao et al.
[3] suggests that such safety training or finetuning on LLMs
are both computationally expensive in terms of hardware, and
resource-intensive in terms of high-quality training corpora
with carefully curated instructions.

2) External Defence: Given that internal defences are em-
bedded within LLMs, and most powerful LLMs are closed-
source—making direct improvements infeasible—external
runtime guardrails have been developed to ensure runtime
safety for deployed LLM-powered systems. Additionally fine-
tuning or reinforcement learning for customisation in LLMs
is also often prohibitively expensive, further emphasising the
need for external solutions [29].

Unlike internal defence mechanisms, which are embedded
during the training phase, external guardrails are implemented
post-deployment and are primarily designed to intercept and
manage user interactions in real-time [30]. These systems
aim to detect, filter, or modify inputs and outputs of LLMs
to mitigate potential risks associated with misuse, toxicity,
hallucinations, and other undesirable behaviours [31].

External guardrails differ from internal LLM defences in
several ways. First, external guardrails are model-agnostic,
allowing them to be applied across various LLMs without
modification. In contrast, internal safety alignment or fine-
tuning performed by practitioners for specific use cases must
be repeated with each new version of the LLM. Second, exter-
nal guardrails operate at runtime, intercepting and managing
inputs and outputs in real-time, whereas internal defences are
embedded into the model during the training or fine-tuning
stages, making them static and less adaptable to new threats.

Recent works have proposed a variety of different
guardrails, utilising a wide range of techniques to ensure the
input prompts are safe. Inan et al. [6] proposed LlamaGuard,
a fine-tuned Llama model that is used to classify the input and
output of LLMs as safe or unsafe. Markove et al. [7] proposed
the OpenAI Moderation API, using an active learning pipeline
to capture rare events and detect broad categories of unsafe
content. Lees et al. [9] proposed PerspectiveAPI, a Unified
Toxic Content Classification (UTC) capable of robust toxic
content detection. Alon et al. [8] proposed to use the Perplexity
metric to detect irregularities in the input prompt, and hence
as a filter to identify any unsafe content in the prompt.

Nevertheless, despite the advancements in external
guardrails, challenges remain in their effectiveness against
jailbreak attacks. In the following section, we introduce
the key limitations of the current state-of-the-art external

guardrail, LlamaGuard [6].

D. LlamaGuard: A State-of-the-Art Runtime Guardrail and Its
Limitations

LlamaGuard represents an open-source, state-of-the-art ap-
proach to safeguarding interactions in human-AI conversa-
tions. Inan et al. [6] used a robust taxonomy of safety risks
to fine-tune the Llama LLM, for the purpose of classifying
prompts and responses into safe or unsafe categories. Despite
being a generative model, LlamaGuard takes in a prompt as
input, and outputs either “safe” or “unsafe” as the model
output, and the risk taxonomy if the prompt is deemed as
unsafe.

LlamaGuard proves to be a valuable tool in the field of
external guardrails for several key reasons. First, LlamaGuard
supports both prompt and response classification, simultane-
ously addressing the safety of both user input and model
output. Second, LlamaGuard demonstrates high adaptability
by allowing users to customise its input to align with other
taxonomies suitable for their specific use cases, despite being
originally trained on a predefined set of safety risk taxonomies.
Third, most available tools rely on conventional transformer
models with smaller parameter sizes, which limits their capa-
bilities when defending against much larger LLMs. However,
LlamaGuard has the following limitations.

Limitation 1⃝: Limited Defence Effectiveness Against
Non-English and Obfuscated-Based Jailbreak Prompts.
As the training data used for LlamaGuard is in English, the
performance against inputs that are not in English could be
greatly reduced [6]. Particularly, common obfuscation-based
jailbreak attacks that transform unsafe prompts into various
formats, such as Base64 encoding [11], cipher text such as
Caesar Cipher [12], or less commonly supported languages
such as Zulu [11]. We found that these transformations are
capable of bypassing LlamaGuard’s detection mechanisms,
highlighting the need for an improved runtime guardrail that
can more effectively counter non-English or obfuscation-based
jailbreak prompts.

Limitation 2⃝: Lack of knowledge on jailbreak attack
patterns to defend template-based jailbreak prompts. Inan
et al. [6] stated that the training data of LlamaGuard does not
include jailbreak attacks, thus it may be vulnerable to output
“safe” against unsafe prompt with template-based jailbreak
attack applied. Although fine-tuning the model could address
this issue, it is a resource-intensive process that is not feasible
for most organisations due to LlamaGuard’s large scale, with
8 billion parameters. This limitation emphasises the need
for more lightweight approaches that can adapt models to
recognise and defend against jailbreak prompts efficiently.

IV. DECIPHERGUARD: RUNTIME DEOBFUSCATION OF
JAILBREAK ATTACK

In this section, we present the design rationale and the
architecture of our proposed DECIPHERGUARD.

Design Rationale. To address the two key limitations of
LlamaGuard, we propose DECIPHERGUARD, which incorpo-
rates a deciphering layer to detect and reverse obfuscation-
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Fig. 3. An overview process of our DECIPHERGUARD approach.

based jailbreak prompts, along with a low-rank (LoRA) adap-
tor [32] to enhance defence against template-based jailbreak
prompts. First, instead of relying solely on a deep learning
(DL)-based language model like LlamaGuard, we introduce
detectors to identify obfuscation-based jailbreak prompts and
a reverse layer to convert them into natural language prompts
before inputting them into LlamaGuard. This deciphering layer
could potentially enhance LlamaGuard’s defense capability,
as it is more effective at defending against unsafe prompts
written in natural language rather than obfuscated prompts.
Second, we introduce a low-rank adaptor (LoRA) to enhance
LlamaGuard’s capability to defend against template-based
jailbreak prompts. Rather than updating the existing 8 billion
parameters within LlamaGuard, LoRA adds a relatively small
set of approximately 4 million parameters, enabling the model
to adapt specifically to template-based jailbreak prompts. This
adaptor is cost-efficient in computational resources and ensures
that LlamaGuard’s pre-trained knowledge remains intact by
freezing those parameters during model adaptation.

Figure 3 presents an overview process of our DECIPHER-
GUARD approach. We detail each step below.

A. Obfuscate Prompts Detection and Reverse

Algorithm 1 presents an overview of the deciphering layer
used in DECIPHERGUARD to detect and deobfuscate the three
jailbreak prompts: Base64, Zulu, and Caesar Cipher.

1 Detect and Deobfuscate: In Step 1 , we leverage the
“base64” Python library [33] to detect and decode Base64-
encoded prompts to UTF-8 natural language. We then use
the “lingua” language detection Python library [34], which
supports 75 languages, including Zulu, to detect Zulu jailbreak
prompts. We rely on the Google Translation API provided in
the “googletrans” Python library [35] to reverse the detected
Zulu jailbreak prompts into English. To detect and reverse
Caesar Cipher jailbreak prompts, we implement a function
that shifts each character in the input prompts through all
25 possible positions of the Caesar Cipher. We then use the
“lingua” language detection Python library to identify the
most English-like prompt from the 26 generated inputs, with
the selected input representing the decrypted version of the
detected jailbreak prompt.

Algorithm 1 Detect and Deobfuscate Jailbreak Prompts
Input: user input
# Detect and reverse Base64
model input = decode base64(user input)
if model input is False then

language = language detector(user input)
# Detect and reverse Zulu
if language == ”ZULU” then

model input = translator(user input, ”zu”, ”en”)
else

# Detect and reverse Caesar Cipher
for shift = 0 to 25 do

user input = caesar shift(user input, shift)
language = language detector(user input)
if language == ”ENGLISH” then

model input = user input
break

end if
end for

end if
end if

B. Low-Rank Adaptation for Defending Jailbreak Prompts

Below, we present how we apply the chat template to
the output of our deciphering layer (Step 1 ), followed by
the model architecture used in DECIPHERGUARD. We then
describe the parameter-efficient fine-tuning strategy employed
to enhance DECIPHERGUARD’s ability to defend against jail-
break prompts. Finally, we explain how DECIPHERGUARD is
used to generate tokens and detect unsafe prompts.

2 Apply Chat Template: In Step 2a , the input prompt has
been processed by our deciphering layer, where the detected
obfuscation-based jailbreak prompts have been reversed. In
Step 2b , we apply the chat template proposed by Inan et al.
[6]. Specifically, each input prompt is prefixed with a set of
special header tokens and a task description. The prompt itself
is enclosed between the “<BEGIN CONVERSATION>” and
“<END CONVERSATION>” special tags. Finally, the tem-
plate concludes with an instruction that guides the model in
generating either safe or unsafe tokens in the first generated
line to detect unsafe prompts.
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3 LlamaGuard: In Step 3 , the formatted input prompt
is processed by a Byte-Pair-Encoding model [36] based on
sentencepiece [37] to encode textual prompts into token IDs
such as [220, 128000, ..., 128007]. Each token ID, which
represents the position of a token in the embedding space,
is mapped to a corresponding vector using the word embed-
ding matrix W ∈ Rv×h of the LlamaGuard model, where
v = 128, 256 is the vocab size and h = 4, 096 is the
hidden size. This will produce an input matrix X ∈ Rl×h,
where l is the input sequence length. The input X is then
fed into a stack of 32 transformer decoders. Each decoder
consists of multiple layers, including masked self-attention,
and feed-forward neural networks (FFNN), as used in the
LlamaGuard model. The self-attention mechanism enables the
model to capture dependencies across the input sequence,
while the feed-forward layers apply non-linear transformations
to enhance representation learning. These layers are stacked to
build a deep network. For a detailed explanation of transformer
decoders, we refer readers to the original paper [21].

4 LoRA (Low-Rank Adaptation): In Step 4 , To en-
hance DECIPHERGUARD’s ability to defend against jailbreak
prompts, we use Low-Rank Adaptation (LoRA) to efficiently
adapt LlamaGuard’s 8B-parameter model without fine-tuning
its full parameter set. The pre-trained knowledge of Llam-
aGuard, while effective for general unsafe prompts, showed
limitations in defending jailbreak prompts, as demonstrated in
RQ1, Finding 1. LoRA modifies specific layers of LlamaGuard
by introducing low-rank updates to their weight matrices, fo-
cusing only on a small subset of parameters while freezing the
original pre-trained weights. Specifically, the weight update
matrix ∆W for a target layer is parameterised as the product
of two new trainable matrices, A ∈ Rh×r and B ∈ Rr×h.
Here, h is the hidden size, and r ≪ h is a tunable rank
parameter that controls the size of the adaptation. The updated
weight for a given layer is expressed as:

Wnew = Wpretrained + AB.

In our implementation of DECIPHERGUARD, we apply LoRA
to the word embedding layer, self-attention layers, and FFNN
layers of LlamaGuard. For the word embedding layer, h cor-
responds to the embedding size, and for the self-attention and
FFNN layers, h corresponds to the hidden size. By restricting
updates to the low-rank matrices A and B and leaving the
pre-trained weights (Wpretrained) unchanged, we preserve the
original capabilities of LlamaGuard while enabling efficient
and focused adaptation to jailbreak prompts.

5 Detect and Block Unsafe Prompts: After applying the
low-rank adaptation to LlamaGuard in Step 4 , we obtain the
model used in our DECIPHERGUARD approach. In Step 5 , we
employ our DECIPHERGUARD approach to detect and block
unsafe prompts from users before they are forwarded to an
LLM-powered software system. Given the output of the 32nd
decoder layer, denoted as H ∈ Rl×h, where l is the sequence
length and h is the hidden size, DECIPHERGUARD treats the
detection of unsafe prompts as a sequence generation task
rather than a classification problem. To generate tokens, a
linear layer maps H to a distribution over the vocabulary.
Specifically, the hidden state of each token Hi ∈ Rh is

transformed using a weight matrix Wlm ∈ Rh×v and a
bias vector blm ∈ Rv , where v is the vocab size. The
resulting logits are then passed through a softmax function
to compute probabilities over all possible tokens. Guided by
the instructions embedded in the chat template from Step
2b , the model generates a sequence where the first token
explicitly indicates whether the input prompt is “safe” or
“unsafe.” Specifically, we use greedy decoding to select tokens
iteratively by choosing the one with the highest probability
at each step. Formally, the next token ti is determined as
ti = argmaxksoftmax (HiWlm + blm)k, where k is the
index of a token in the vocabulary, corresponding to the
token with the highest probability after applying the softmax
function. This process continues until the model generates
the special end-of-text token “¡—eot id—¿” or reaches the
specified maximum token limit. We then select the first token
generated by DECIPHERGUARD to detect unsafe prompts.

V. EXPERIMENTAL DESIGN

In this section, we present the motivation of our four
research questions, the studied dataset, the studied jailbreak
attacks, and our experimental setup.

A. Research Questions

To evaluate our DECIPHERGUARD approach, we formulate
the following four research questions.

RQ1) What is the impact of the jailbreak attacks on
the existing runtime guardrails? Recently, Inan et al. [6]
proposed LlamaGuard, a runtime guardrail for LLMs designed
to classify prompts as safe or unsafe. Despite its state-of-
the-art performance of 0.945 accuracy, a key limitation exists
as (author?) [6] speculated LlamaGuard may be susceptible
to attacks that could alter or bypass its intended use. This
means attackers can apply jailbreak attacks to unsafe prompts
and potentially bypass the defence of LlamaGuard, weakening
the reliability of AI guardrails, as their performance may be
overestimated when evaluated on prompts not subjected to
advanced jailbreak techniques. Yet, little is known about how
jailbreak attacks can alter the performance of AI guardrails.
Thus, we investigate the impact of jailbreak attacks against
current AI guardrails.

RQ2) How effective is our DECIPHERGUARD in defend-
ing against jailbreak prompts? Given that jailbreak prompts
can easily bypass the guardrail’s defences, leading to a lower
DSR as identified in RQ1, this research question aims to eval-
uate the robustness of our proposed DECIPHERGUARD against
jailbreak attacks by analysing the impact on its DSR. In
Sections IV-A and IV-B, we introduced the deciphering layer
and LoRA-tuning, which aims to evaluate the DSR gains
from these components compared to the baseline. Thus, we
investigate the performance of our DECIPHERGUARD against
baseline guardrails when defending against jailbreak attacks.

RQ3) What is the overall performance of DECIPHER-
GUARD when considering both aspects of defence success
rate and false alarm rate? Ideally, LLM guardrails should
correctly defend jailbreak prompts by blocking them, while
also correctly classifying safe prompts as safe and allowing
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them to pass to the LLM-powered system. However, in this
scenario, relying solely on DSR is insufficient to achieve a
comprehensive evaluation, as it fails to reflect the instances
of false positives that guardrails may produce. Thus, we
investigate how well our DECIPHERGUARD balances defence
performance against jailbreak attacks while accounting for
false alarms.

RQ4) What are the contributions of the compo-
nents of our DECIPHERGUARD? Our DECIPHERGUARD in-
volves two key components—the deciphering layer and Low-
Rank (LoRA) Adaptation—to enhance its defence capabilities
against jailbreak prompts. However, little is known about the
contributions of each component in our DECIPHERGUARD and
which component contributes the most to the Defence Success
Rate (DSR) and our proposed metric - Overall Guardrail
Performance (OGP) of our DECIPHERGUARD. Thus, we for-
mulate this RQ to conduct an ablation study on the different
variants of our DECIPHERGUARD.

B. Data Preparation

To address our four research questions, we require a com-
prehensive dataset encompassing jailbreak prompts, unsafe
prompts, and safe prompts. To this end, we prepared a dataset
comprising 18,790 jailbreak prompts, 1,879 unsafe prompts,
and 2,000 safe prompts. Jailbreak prompts were generated
by applying 10 distinct jailbreak attack techniques to the
unsafe prompts, transforming them into adversarial examples
designed to bypass guardrails. Unsafe prompts were sourced
from four benchmark datasets: Do-Not-Answer [38], CatQA
[39], AdvBench [40], and Forbidden Questions [14]. For safe
prompts, we utilised the Alpaca dataset [41].

To answer RQ1 and RQ2, which focus on evaluating
the defence effectiveness of the studied guardrails and our
proposed DECIPHERGUARD, we leverage the jailbreak and
unsafe prompts to assess their ability to defend against unsafe
prompts with and without jailbreak attacks. To answer RQ3
and RQ4, which aim to evaluate the overall effectiveness
of each guardrail, we utilise the full dataset, including safe
prompts, to consider the number of false alarms from the
guardrails. This ensures that the defence capability of DE-
CIPHERGUARD is achieved without a corresponding increase
in false alarms, thereby offering a comprehensive evaluation
of its effectiveness. In what follows, we provide a detailed
introduction to each data source used to build our studied
dataset.
Jailbreak Prompts (i.e., Unsafe Prompts with Jailbreak
Attacks). For each one of our studied jailbreak attacks, we
apply them to the unsafe prompts dataset to get the jailbreak
prompts. In total, we apply 10 jailbreak attacks to the unsafe
prompts dataset consisting of 1,879 unsafe prompts, resulting
in 18,790 jailbreak prompts.
Unsafe Prompt Datasets. In RQ1 and RQ2, we use unsafe
prompts and unsafe prompts with jailbreak attacks applied
to evaluate the performance of baseline guardrails and DE-
CIPHERGUARD. To do so, we need a benchmark dataset of
unsafe prompts. However, there exists numerous harmful cat-
egories of unsafe prompts (e.g., adult content, child exploita-

tion). To ensure that our empirical evaluation is not bound to
specific types of harmful categories, we use four benchmark
datasets consisting of human-written prompts (i.e., Forbidden
Questions [14]) and machine-generated prompts (i.e., Do-Not-
Answer [38], CatQA [39], AdvBench [40]). These selected
benchmark datasets will allow us to analyse guardrails’ perfor-
mance when exposed to attacks across various unsafe prompt
categories. We describe each dataset below:

• Do-Not-Answer [38]: This dataset consists of GPT-4
generated prompts when the model is prompted by What
kind of questions should an AI assistant not answer?.

• CatQA [39]: This dataset consists of harmful prompts
across 11 combined categories, built on top of the com-
bined list of prohibited use cases mentioned in OpenAI
usage policies and Meta’s Llama2 acceptable use policy.

• AdvBench [40]: This dataset consists of harmful prompts
formulated as instructions, originally used to perform
Greedy Coordinate Gradient attack [40], which finds
universal and transferable attack prompts by optimising
against multiple smaller open-source LLMs for multiple
harmful behaviours.

• Forbidden Questions [14]: This dataset consists human-
generated unsafe prompts collected from online sources,
spanning 13 forbidden scenarios outlined in the OpenAI
Usage Policy.

Safe Prompt Datasets. In RQ3 and RQ4, we use safe prompts
in combination with the unsafe prompt datasets under jailbreak
attacks, to evaluate whether DECIPHERGUARD meets the real-
world deployment needs of producing minimum false alarms
compared to baseline guardrails. We include a dataset of safe
prompts, the Alpaca dataset [41], consisting of safe instruc-
tions used to fine-tune LLMs to enhance their instruction-
following capabilities.

C. Studied Jailbreak Attacks

Previous works have proposed various taxonomies of jail-
break prompts against LLMs [31, 42, 43]. In this study,
we focus exclusively on single-turn, black-box jailbreak
techniques, which do not require feedback or response from
the LLM for optimisation. This ensures that we are testing the
effectiveness of the runtime guardrails themselves, rather than
assessing or interacting with internal defence mechanisms of
the LLMs.

In total, we compiled 10 jailbreak attack techniques guided
by Dong et al. [31] and Yi et al. [43] to evaluate both the
baseline guardrails and our proposed DECIPHERGUARD. By
selecting a wide range of types of jailbreak attacks, we aim to
better understand which attack types are most effective at cir-
cumventing guardrails and where gaps remain. We categorise
the 10 attack techniques into 3 categories, as reflected by their
traits:

• Template-based: Applying pre-defined templates and
modifications to the prompt, leveraging specific word-
ings, structures, or sequences to trick the model into
generating restricted content. The studied attacks are AIM
citejailbreakchat2023, DAN [14], Combination (prefix
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injection + refusal suppression) [3], Self Cipher [12] and
DeepInception [16].

• Obfuscation-based: Rephrasing, encoding, or translating
prompts into forms that guardrails may not recognise.
These methods rely on the lack of multilingual alignment
when guardrails are trained. The studied attacks are
Caesar Cipher [12], Zulu [11], and Base64 [3].

• Code-based: Disguising harmful content within program-
ming logic or dual-purpose scripts, exploiting the code
generating capabilities within LLMs. The studied attacks
are Dual Use [17], and Code Chameleon [18].

D. Studied Guardrails

In this section, we provide a detailed description of the
four guardrails studied in our experiments, including their
classification mechanisms and key features.

1) LlamaGuard: Based on the Llama3-8B model, Llama-
Guard is an input-output guardrail that acts as an LLM to
generate text in its output which indicates whether a given
prompt or response is safe/unsafe. A prompt is classified
as unsafe if the model’s response contains the “unsafe”
token in the first generated line.

2) OpenAI Moderation: An active learning guardrail that
leverages publicly sourced data to identify previously
unknown instances of unsafe content and fine-tune the
GPT-based generative guardrail. When a prompt is passed
to this API, it is classified as unsafe if the API returns a
boolean value flagged as “True”.

3) PerspectiveAPI: Using a Transformer-based model to
return a probability score of whether the prompt should be
considered unsafe under each of its violation categories.
A prompt is classified as unsafe if the API reports a
probability exceeding 0.5 for any harmful category it
supports.

4) Perplexity: A measure that focuses on detecting irregular-
ities in the linguistic structure of sentence by evaluating
the probabilities of the next token predicted by an LLM.
To compute perplexity for a given input using a pre-
trained model such as GPT-2 [44], the model calculates
the probability of each token conditioned on its preceding
tokens. The perplexity is formulated as PPL (x) =

exp
(
− 1

t

∑t
i=1 log p (xi|x<i)

)
where x is the input text

sequence, xi is the i-th token, x<i represents the sequence
of preceding tokens, and t is the total number of tokens
in the sequence.
We follow the method proposed by Liu et al. [45]. First,
a perplexity score is calculated from a set of safe prompts
using the target LLM, the threshold is then set such
that the False Positive Rate (FPR)—the fraction of safe
prompts incorrectly flagged as unsafe—remains within
an acceptable limit, such as 1%. Following this method,
we obtain a threshold of 106, above which a prompt
is classified as unsafe. We discuss the impact of the
perplexity threshold on the performance of Perplexity in
the Discussion section.

E. Experimental Setup

Data Splitting. For RQ2, RQ3, and RQ4, we use a stratified
splitting to randomly split each type of jailbreak prompts
evenly. Following common practice, the jailbreak prompts
were initially divided into 10%/10%/80% for LoRA fine-
tuning, validation, and testing. However, we opted to use only
5% of the jailbreak prompts (940 samples) for LoRA fine-
tuning, 10% for validation, and the remaining 80% (15,032
samples) for testing. The impact of the training data sensitivity
is further discussed in Section ??.
Model Implementation and Optimisation. To implement our
DECIPHERGUARD approach for defending unsafe prompts,
we leveraged two Python libraries, i.e., Transformers [46]
and Pytorch [47]. The Transformers library provides APIs
for transformer-based model architectures and pre-trained
weights, while PyTorch facilitates computations during train-
ing, including backpropagation. We downloaded the Llama-
Guard checkpoint “meta-llama/Llama-Guard-3-8B” provided
by Inan et al. [6]. We used our training set and low-rank
adaptation [32] to fine-tune the checkpoint and obtain suitable
weights for defending jailbreak prompts. The model was
fine-tuned on two NVIDIA RTX 3090 graphic cards and
the training time was 58 minutes. As shown in Equation 3,
the Cross-Entropy Loss was used to update the model and
optimise the alignment between the model’s predicted token
probabilities and the target sequence. For our training setup,
the input is a chat-templated jailbreak prompt, and the target
output is the same input followed by a single classification
token, “unsafe”. The loss function measures the negative log-
likelihood of the correct token at each position in the target
sequence, guiding the causal language model (CLM) fine-
tuning to generate accurate outputs for defending jailbreak
prompts. The Cross-Entropy Loss is computed as:

LCE = − 1

T

T∑
t=1

logP (yt | x1:t) (3)

where T is the total number of tokens in the target sequence, yt
is the target token at position t, and P (yt | x1:t) is the model’s
predicted probability for the correct token yt, conditioned on
the input and all previously generated tokens x1:t. In our
setup, the loss is primarily focused on the generation of the
final token (“unsafe”), ensuring that the model predicts this
token accurately based on the context of the input jailbreak
prompt. We masked out the other tokens in the target sequence
to prevent the model from being penalised for incorrectly
predicting them. By minimising this objective function, the
model learns to produce outputs where the first token after
generating the input will be the “unsafe” token when the input
is identified as unsafe.
Hyper-Parameter Settings. In our experiments, we set the
learning rate to 1 × 10−4 with a constant learning rate
scheduler. We used the AdamW optimiser [48] to update the
model parameters. For the LoRA configuration, we set the
rank (r) to 8, the alpha (α) to 32, and applied a dropout
rate of 0.1. Due to GPU memory constraints, the training
batch size was set to 1. The complete training recipe for
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DECIPHERGUARD approach, is available in our replication
package at https://github.com/awsm-research/DecipherGuard.

VI. EXPERIMENTAL RESULTS

In this section, we present the results for our four research
questions.

(RQ1) What is the impact of the jailbreak attacks on the
existing runtime guardrails?

Approach: To address this RQ, we investigate the impact of
the jailbreak attacks on the performance of the existing runtime
guardrails. Specifically, we compare the performance of the
existing runtime guardrails in detecting unsafe prompts before
and after applying jailbreak techniques. For the evaluation,
we start with 1,879 unsafe prompts from studied datasets pre-
sented in Section V-B, we then applied ten types of jailbreak
attacks, transforming them into an additional 18,790 jailbreak
prompts. Both the original unsafe prompts and the jailbreak
prompts are tested across four studied guardrails: LlamaGuard,
OpenAI Moderation, PerspectiveAPI, and Perplexity. We use
the Defence Success Rate (DSR) to quantify the defensive
capability of guardrails. DSR is defined as the percentage of
the number of the jailbreak prompts that can be the success-
fully defended by a runtime guardrail #Promptssuccess and
the total number of the jailbreak prompts #TotalPrompts:

DSR =
#Promptssuccess
#TotalPrompts

(4)

Results: Figure 4 presents the defence success rate (DSR)
of the four evaluated guardrails, comparing their performance
under two scenarios: unsafe prompts without (blue bars) and
with (red bars) jailbreak attacks.

LlamaGuard’s DSR substantially decreases by 24.16%,
decreasing from 81.64% to 57.48% when defending against
unsafe jailbreak prompts. Similarly, OpenAI Moderation’s
DSR drops by 37.45%, declining from 76.64% to 39.19%.
These results indicate that while both guardrails perform well
with original unsafe prompts, achieving the two highest DSRs
of 81.64% and 76.64% among baseline guardrails, respec-
tively, their defense capabilities are substantially reduced by
24.16% and 37.45% when confronted with jailbreak prompts.

This finding demonstrates that the effectiveness of state-
of-the-art guardrails is decreased when defending against
jailbreak prompts, highlighting the need for jailbreak-
aware guardrails capable of effectively defending such
jailbreak prompts.

(RQ2) How effective is our DECIPHERGUARD in defending
against jailbreak prompts?

Approach: To address this RQ, we aim to evaluate the
performance of our own DECIPHERGUARD against the state-
of-the-art guardrails. We chose three guardrails, namely Lla-
maGuard [6], OpenAI Moderation [7], and Perplexity [8].
PerspectiveAPI was excluded as it refuses to process prompts
with languages outside its training scope, particularly those
transformed by obfuscation-based attacks (Base64, Zulu, Cae-
sar Cipher). Specifically, we focus on the 18,790 jailbreak
prompts to assess the effectiveness of DECIPHERGUARD in
defending against such attacks, using the same Defence Suc-
cess Rate (DSR). We present the absolute percentage differ-
ence between our DECIPHERGUARD and baseline guardrails
as: %DSRDecipherGuard −%DSRbaseline.

Results: Figure 6 presents the defence success rate (DSR)
of our DECIPHERGUARD compared with the three baseline
guardrail approaches.

Our DECIPHERGUARD achieves a DSR of 94.05% when
under jailbreak attacks, which is 36% to 65% higher
than the baseline guardrail approaches with a median
improvement of 54%. In terms of DSR against jailbreak
prompts, Figure 6 shows that DECIPHERGUARD achieves
the highest DSR of 94.05%, while the baseline guardrails
achieve a DSR of 28.67%-57.48%. This finding shows that
DECIPHERGUARD substantially improves the state-of-the-art
guardrails by 36% to 65% with a median improvement
of 54.9%. These results confirm that our DECIPHER-
GUARD approach is more effective than baseline guardrails
in defending against jailbreak prompts.

Figure 5 presents the DSR of our DECIPHERGUARD com-
pared to the other three baseline guardrails, categorised
by the ten different jailbreak attacks. Notably, DECIPHER-
GUARD substantially improves the DSR against obfuscation-
based attacks compared to the best-performing baseline, Lla-
maGuard. For the three obfuscation-based attacks, DECI-
PHERGUARD achieves an improvement of 96.19% (2.55% →
98.74%) for Base64; 80.07% (4.84% → 84.91%) for Caesar
Cipher; and 43.6%, (32.73% → 76.33%) for Zulu. Similarly,
DECIPHERGUARD also enhances the DSR for the second-
best baseline, OpenAI Moderation, achieving an improvement
of 74% to 98% across the obfuscation-based attacks. These
results demonstrate that DECIPHERGUARD effectively ad-
dresses a key limitation of the state-of-the-art guardrail,
LlamaGuard, namely its vulnerability to obfuscation-based
attacks, highlighting the potential of DECIPHERGUARD to
improve guardrail effectiveness in such scenarios.

https://github.com/awsm-research/DecipherGuard


11

79.03% 77.28%

87.39%

4.84% 2.55%

88.29%

68.28%

53.91%

80.52%

32.73%

75.41%

11.92%

80.26%

0% 0%

66.15%
61.04%

22.94%

72.33%

1.81%0% 0%

59.29%

37.15%

89.84%

0% 0.05% 0.27% 0%

100%

85.97%

96.14%
92.35%

84.91%

98.74%
93.28% 91.29%

85.64%

92.29%

76.33%

0.00

0.25

0.50

0.75

1.00

AIM

ba
se

64

ca
es

ar
_c

iph
er

Cod
e 

Cha
m

ele
on

co
m

bin
at

ion DAN

de
ep

In
ce

pt
ion

du
al_

us
e

se
lf_

cip
he

r
zu

lu

Jailbreak Attack Methods

D
ef

en
se

 S
uc

ce
ss

 R
at

e 
(D

S
R

)

Guardrail DecipherGuard LlamaGuard OpenAI Moderation Perplexity

DSR of Guardrails for Different Jailbreak Attacks

Fig. 5. (RQ2) DSR of different jailbreak attacks against guardrails.

28.67%

57.65%

39.19%

94.05%

0.00

0.25

0.50

0.75

1.00

DecipherGuard LlamaGuard OpenAI Moderation Perplexity
Guardrails

D
S

R

DSR of DecipherGuard vs Baseline Guardrails

Fig. 6. (RQ2) The Defence Success Rate (DSR) of our DECIPHER-
GUARD when compared with three other state-of-the-art guardrails. Higher
DSR = Better. (↗)

45.83%

75.88%

62.32%

96.44%

0.00

0.25

0.50

0.75

1.00

DecipherGuard LlamaGuard OpenAI Moderation Perplexity
Guardrails

O
G

P

OGP of DecipherGuard vs Baseline Guardrails

Fig. 7. (RQ3) The Overall Guardrail Performance (OGP) of our DECIPHER-
GUARD when compared with three other state-of-the-art guardrails. Higher
OGP = Better. (↗)

(RQ3) What is the overall performance of DECIPHER-
GUARD when considering both aspects of defence success rate
and false alarm rate?

Approach: To address this RQ, we compare the overall
performance of our DECIPHERGUARD with the three baseline
guardrails as in RQ2. We consider 2,000 safe prompts, 1,879
unsafe prompts without applying jailbreak attacks, and 18,790
jailbreak prompts. Prior research [6, 15, 49] has commonly
employed traditional metrics such as AUPRC, accuracy, at-
tack success rate (ASR), and F1 score to evaluate runtime
guardrails. However, these metrics fail to capture the critical
balance between defence success and false alarms, which is
essential for the practical deployment of guardrails. In particu-
lar, metrics like ASR and accuracy focus solely on whether an
attack bypasses the guardrail, neglecting the equally important
aspect of reducing false alarms. While the F1-score effectively

balances precision and recall, it is inadequate for evaluating
runtime guardrails. This limitation arises because it does not
account for the trade-off between defence effectiveness and
false alarms, neglecting to penalise an excessive number of
false positives. To address this gap, we propose the Overall
Guardrail Performance (OGP) metric, defined as:

OGP =
√
DSR× (1− FAR) (5)

, where DSR (Defence Success Rate) measures the guardrail’s
ability to block unsafe prompts. FAR (False Alarm Rate)
is calculated as NFA

Nsafe
where NFA is the total number of

false alarms and Nsafe is the total number of safe prompts.
In addition, (1− FAR) (the complement of FAR) captures
guardrails’ reliability in avoiding false positives. We then use
the geometric mean to combine the two factors. Our choice
of the geometric mean in the OGP metric is inspired by an
established metric, the G-measure, which is the geometric
mean of precision and recall. The G-measure normalizes
true positives relative to both predicted positives and actual
positives, effectively balancing the trade-off between the two
measures. In other words, the amount of information the G-
measure provides is the arithmetic mean of the information
from precision and recall, ensuring that neither metric domi-
nates the overall evaluation [50]. By combining these factors
through a geometric mean, OGP evaluates guardrails holisti-
cally, ensuring that high defensive efficacy is not achieved at
the expense of a high number of false alarms.

Results: Figure 7 presents the experimental results of our
DECIPHERGUARD and the three baseline guardrails in terms
of Overall Guardrail Performance (OGP).

Our DECIPHERGUARD achieves a OGP value of
96.44%, which is 20%-50% better than other baseline
guardrails. In terms of the OGP, Figure 7 shows that our
DECIPHERGUARD achieves an OGP of 96.44%, while the
existing guardrails achieve an OGP of 45.83%-75.88%. This
finding shows that DECIPHERGUARD substantially improves
the baseline guardrails by 20%-50% with a median improve-
ment of 33%. These results confirm that our DECIPHER-
GUARD approach achieves better overall performance, en-
hancing defense effectiveness while reducing false alarms.

In other words, our results demonstrate that the combination
of the deciphering layer and low-rank adaptation (LoRA)
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Fig. 8. (RQ4) Evaluation of different variations of DECIPHERGUARD.

mechanisms outperforms guardrails that rely solely on pre-
trained large language models (LLMs) such as LlamaGuard.
Prior works [6, 7] have utilised LLMs as guardrails to defend
against potentially unsafe prompts from end users. However,
as demonstrated in RQ1, their Decision Success Rate (DSR)
drops significantly when confronted with jailbreak prompts. In
RQ2, we found that these LLM-driven guardrails are particu-
larly vulnerable to obfuscation-based attacks, such as Base64,
Caesar Cipher, and Zulu, as illustrated in Figure 5. In con-
trast, our DECIPHERGUARD enhances LLM-driven guardrails
by integrating a deciphering layer designed to detect and
reverse obfuscation-based attacks. Additionally, DECIPHER-
GUARD extends LlamaGuard through Low-Rank Adaptation
(LoRA), a lightweight and parameter-efficient (only 0.06% of
parameters are tuned) fine-tuning approach that requires only
10% of the training data. This adaptation enables the model to
better defend against jailbreak prompts while preserving the
original pre-trained parameters of LlamaGuard. This paper is
among the first to propose a deciphering layer and the use of
LoRA to enhance LLM-driven guardrails, offering an effective
solution to counter obfuscation-based attacks and adapt to
evolving jailbreak scenarios.

(RQ4) What are the contributions of the components of our
DECIPHERGUARD?

Approach: To answer this RQ, we investigate the con-
tributions of the deciphering layer and LoRA within DECI-
PHERGUARD by examining the DSR and OGP of DECIPHER-
GUARD after removing different components. To understand
and quantify the contribution of the two components of our
approach, we alter DECIPHERGUARD as follows:

• LlamaGuard: Remove all components, plain LlamaGuard
only.

• Decipher+LlamaGuard: Remove LoRA, but keep the
deciphering layer.

• LoRA+LlamaGuard: Remove the deciphering layer, but
keep LoRA to fine-tune LlamaGuard.

• LoRA+ Decipher + LlamaGuard: Full proposed Deci-
pherGuard.

Following our previous RQs, we use the Defence Success Rate
(DSR) and Overall Guardrail Performance (OGP) as measures
for this ablation study.

Results: Figure 8 presents the ablation study to evaluate the
contributions of the components in our DECIPHERGUARD.

The LoRA component is the most important component
for enhancing Defence Success Rate (DSR) to achieve
better defence effectiveness. Within our DECIPHERGUARD,
the LoRA component contributes to 34.66% of the DSR. When
comparing “LlamaGuard + LoRA” and “LlamaGuard” where
the LoRA component is eliminated, we observe a performance
decrease from 92.31% to 57.65%, accounting for 34.66%.
Within our DECIPHERGUARD, the Decipher component con-
tributes to 18.58% of the DSR. When comparing “Llama-
Guard + Decipher” and “LlamaGuard” where the Decipher
component is eliminated, we observe a performance decrease
from 76.23% to 57.65%, accounting for 18.58%. These results
underscore the substantial contributions of each component to
the overall defence effectiveness of DECIPHERGUARD, which
achieves the highest of 94.05% when both components are
active.

The LoRA component is the most important component
for enhancing Overall Guardrail Performance (OGP),
leading to improved overall performance when considering
safe prompts. Within our DECIPHERGUARD, the LoRA com-
ponent contributes to 19.76% of the OGP. When comparing
“LlamaGuard + LoRA” and “LlamaGuard” where the LoRA
component is eliminated, we observe a performance decrease
from 95.64% to 75.88%, accounting for 19.76%. Within
our DECIPHERGUARD, the Decipher component contributes
to 11.38% of the DSR. When comparing “LlamaGuard +
Decipher” and “LlamaGuard” where the Decipher compo-
nent is eliminated, we observe a performance decrease from
87.26% to 75.88%, accounting for 11.38%. These results
underscore the substantial contributions of each component to
the overall defence effectiveness of DECIPHERGUARD, which
achieves the highest OGP of 96.44% when both components
are active.

The Decipher component plays a crucial role in enhancing
the overall performance of DECIPHERGUARD, contributing
substantially to 18.58% of the DSR and 11.38% of the
OGP. Unlike LoRA, which relies on fine-tuning data and
computation, Decipher offers a lightweight yet effective
solution that requires no additional fine-tuning, making
it computationally efficient and adaptable. Furthermore,
the Decipher component can be integrated into non-LLM-
based guardrails as an additional input processing layer.
This flexibility expands its applicability to a wider range
of guardrails to enhance their defence effectiveness against
obfuscated-based jailbreak prompts.

VII. DISCUSSION

In the previous experiment section, we empirically evaluated
the performance of our DECIPHERGUARD and conducted an
ablation study to support our design rationale. However, the
computational overhead introduced by this layer has not been
evaluated for the deciphering layer, which detects and reverses
obfuscation-based jailbreak prompts by acting as an additional
preprocessing layer. In this section, we perform an extended
analysis of our proposed approach to resolve this question.
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TABLE I
(DISCUSSION) RUNTIME LATENCY ANALYSIS OF OUR DECIPHERGUARD.

Configuration Total Latency
LoRA-tuned LlamaGuard 333 ms
LoRA-tuned LlamaGuard + Base64 Deobfuscation 333.2 ms
LoRA-tuned LlamaGuard + Zulu Deobfuscation 333.5 ms
LoRA-tuned LlamaGuard + Caesar Cipher Deobfuscation 370 ms
DECIPHERGUARD 370.7 ms

A. DECIPHERGUARD’s Runtime Efficiency

In Section IV-A, we proposed the deciphering layer to
detect and reverse obfuscated-based jailbreak prompts. Our
ablation study (RQ4) confirmed its effectiveness in improving
the overall performance of LLM-based guardrails such as
LlamaGuard against jailbreak prompts. However, the compu-
tational overhead introduced by this additional layer remains
unknown. Understanding this latency is crucial for assessing
the feasibility and efficiency of our DECIPHERGUARD for
future deployments. Thus, we analyse the runtime latency
introduced by Base64 deobfuscation, Zulu deobfuscation, and
Caesar cipher deobfuscation, as well as the total latency in-
troduced by DECIPHERGUARD, comparing these results with
the latency of the original LlamaGuard. We use the same data
as in RQ3, consisting of 1,879 unsafe prompts w/o jailbreak,
18,790 unsafe prompts w/ jailbreak, and 2,000 safe prompts.
All components in our deciphering layer are run by an AMD
Ryzen 9 5950X CPU while the LoRA-tuned LlamaGuard is
run by a Nvidia RTX 3090 GPU with 24GB of memory.

Table I presents the median runtime overhead of each
deobfuscation, our DECIPHERGUARD, and LoRA-tuned Llam-
aGuard. Base64 deobfuscation introduces a latency of 0.2 ms,
Zulu deobfuscation 0.5 ms, and Caesar cipher deobfuscation
37 ms. Among these, Caesar cipher deobfuscation is the most
time-consuming due to the need to perform up to 25 character
shifts. Each shift requires invoking a language detector to
determine whether the resulting text is likely English and
not ciphered code (see Algorithm 1). The total latency of
our DECIPHERGUARD is 370.7 ms, comprising a deciphering
layer and a LoRA-tuned LlamaGuard. The deciphering layer
contributes 37.7 ms to this total, representing a relative latency
increase of 11%. Despite this, the layer substantially improves
the Defence Success Rate (DSR) by 18.58% and the Overall
Guardrail Performance (OGP) by 11.38% (see RQ4), all
without requiring model fine-tuning. These results highlight a
reasonable latency tradeoff, offering substantial performance
gains without the computational overhead of model fine-
tuning.

VIII. THREATS TO THE VALIDITY

Threats to construct validity relates to the selection of jail-
break attacks. We selected 10 different jailbreak attacks guided
by their prevalence to guardrails and ability to represent a wide
spectrum of jailbreak techniques [28, 31, 43]. It is important
to note that additional attack types can be included in future
evaluations. However, this would not alter the key conclusion
presented in RQ1, that jailbreak attacks substantially impact
the performance of existing runtime guardrails. The underlying
mechanisms through which these attacks degrade guardrail ef-

fectiveness remain consistent, regardless of the specific attacks
tested.

Threats to internal validity relate to the potential in-
fluence of hyperparameter settings during the fine-tuning of
our DECIPHERGUARD. Variations in model versions or dif-
ferent LoRA hyperparameters, compared to those specified
in Section V, could impact the experiment’s outcomes. To
address this threat, we open-source our replication package
and provide detailed documentation of all hyperparameter
settings to ensure the experiment is reproducible by future
researchers. Additionally, to minimise the impact of non-
determinism introduced by deep learning model training, we
conducted five repetitions of each experiment and presented
the averaged outcomes to demonstrate the stability of our
findings across multiple trials.

Threats to external validity concerns the generalisability
of our results. Our experiment findings are supported by the
dataset, jailbreak methods, and guardrails employed during
the study. The dataset contains 1,879 unsafe prompts and
2,000 safe prompts from a separate dataset. When applied with
the 10 jailbreak methods, we have 18,790 jailbreak prompts
across 10 categories. While DECIPHERGUARD is fine-tuned
specifically to address the jailbreak attacks discussed in this
paper, other prompt datasets and jailbreak methods can be
explored in future work.

IX. CONCLUSION

In this paper, we present DECIPHERGUARD, a novel frame-
work that integrates a deciphering layer with low-rank adap-
tation (LoRA) to effectively defend against obfuscation- and
template-based jailbreak prompts in LLM-powered software
systems. We also introduce the Overall Guardrail Perfor-
mance (OGP) metric, which evaluates guardrail performance
by considering both defense effectiveness and the number of
false alarms. Through an empirical evaluation of over 22,000
prompts across 10 different jailbreak attacks, our results
highlight a substantial performance drop in state-of-the-art
guardrails when confronted with such attacks. In comparison,
DECIPHERGUARD achieves 36%-65% higher Defense Suc-
cess Rate (DSR) and 20%-50% higher OGP, demonstrating
superior effectiveness in defending against jailbreak attacks
while retaining low false alarms. These findings underscore the
potential of DECIPHERGUARD to help defend against jailbreak
attacks and contribute to a safer deployment of intelligent
software systems powered by LLMs.
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