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Abstract—Large language models (LLMs) like ChatGPT (i.e.,
gpt-3.5-turbo and gpt-4) exhibited remarkable advancement in
a range of software engineering tasks associated with source
code such as code review and code generation. In this paper, we
undertake a comprehensive study by instructing ChatGPT for
four prevalent vulnerability tasks: function and line-level vulner-
ability prediction, vulnerability classification, severity estimation,
and vulnerability repair. We compare ChatGPT with state-
of-the-art language models designed for software vulnerability
purposes. Through an empirical assessment employing extensive
real-world datasets featuring over 190,000 C/C++ functions,
we found that ChatGPT achieves limited performance, trailing
behind other language models in vulnerability contexts by a
significant margin. The experimental outcomes highlight the
challenging nature of vulnerability prediction tasks, requiring
domain-specific expertise. Despite ChatGPT’s substantial model
scale, exceeding that of source code-pre-trained language mod-
els (e.g., CodeBERT) by a factor of 14,000, the process of
fine-tuning remains imperative for ChatGPT to generalize for
vulnerability prediction tasks. We publish the studied dataset,
experimental prompts for ChatGPT, and experimental results at
https://github.com/awsm-research/ChatGPT4Vul.

Index Terms—ChatGPT, Large Language Models, Cybersecu-
rity, Software Vulnerability, Software Security

I. INTRODUCTION

Software vulnerabilities are weaknesses or flaws in software
code that can be exploited by attackers to compromise the
security of a system, gain unauthorized access, or cause un-
intended behavior. Recently, there have been advancements in
employing language models for source code (e.g., CodeBERT,
GraphCodeBERT, and CodeT5) to automatically achieve the
following tasks: (1) pinpoint vulnerable functions and state-
ments [9] within source code; (2) recognize vulnerability
types to explain detected vulnerabilities [10]; (3) estimate
the severity of vulnerabilities [10]; and (4) suggest repair
patches [3], [11]. In particular, a deep learning-based software
security tool named AIBugHunter was proposed in VSCode
that achieves promising results for the aforementioned four
vulnerability tasks using multiple fine-tuned language models
for source code [10].

On the contrary, large language models (LLMs) like Chat-
GPT have effectively demonstrated their competence in tasks
related to code, such as the simulation of system behavior from
provided requirements, the formulation of API specifications,
and the discernment of implicit assumptions within code [19].

Leveraging ChatGPT’s considerable scale, with 175 billion
parameters for gpt-3.5-turbo [2] and 1.7 trillion parameters
for gpt-4 [16], offers the potential for its application in
vulnerability-related tasks. However, to the best of our knowl-
edge, no comprehensive studies have been conducted to evalu-
ate the entire vulnerability workflow, spanning from detecting
vulnerabilities and explaining their types to estimating their
severity and repair suggestions.

In this paper, we conduct a thorough analysis to assess
ChatGPT’s ability for the four vulnerability prediction tasks
mentioned above. Noteworthy is the fact that ChatGPT’s 1.7
trillion parameters surpass the count of parameters in source
code-oriented pre-trained language models like CodeBERT
and GraphCodeBERT by nearly 14,000 times. Therefore, the
prevalent approach to utilizing ChatGPT involves furnishing
it with appropriate prompts and task examples, rather than
engaging in fine-tuning for these specific downstream tasks.
It is important to note that the model parameters of ChatGPT
remain proprietary by OpenAI, thereby precluding the possi-
bility of fine-tuning its parameters for vulnerability tasks.

Thus, we compare prompting ChatGPT with other fine-
tuned language models specifically designed for source code
purposes. We conduct experiments to compare two versions of
ChatGPT (i.e., gpt-3.5-turbo and gpt-4) with four competitive
baseline approaches (i.e., AIBugHunter [10], CodeBERT [7],
GraphCodeBERT [12], and VulExplainer [8]) designed for
software vulnerability on four different vulnerability tasks.
Through an extensive evaluation of ChatGPT on two vulnera-
bility datasets (i.e., Big-Vul [6] and CVEFixes [1]) encompass-
ing over 190,000 C/C++ functions, we answer the following
four research questions:
(RQ1) How accurate is ChatGPT for function and line-level
vulnerability predictions?
Results. ChatGPT achieves F1-measure of 10% and 29%
and top-10 accuracy of 25% and 65%, which are the lowest
compared with other baseline methods.
(RQ2) How accurate is ChatGPT for vulnerability types
classification?
Results. ChatGPT achieves the lowest multiclass accuracy of
13% and 20%, which is 45%-52% lower than the best baseline.
(RQ3) How accurate is ChatGPT for vulnerability severity
estimation?
Results. ChatGPT gave the most inaccurate severity estima-
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tion with the highest mean squared error (MSE) of 5.4 and 5.85
while other baseline methods achieve MSE of 1.8 to 1.86.
(RQ4) How accurate is ChatGPT for automated vulnerability
repair?
Results. ChatGPT failed to generate any correct repair
patches while other baselines correctly repaired 7%-30% of
vulnerable functions.

Novelty & Contributions. This paper represents one of
the pioneering pilot studies that comprehensively assess Chat-
GPT’s (gpt-3.5-turbo and gpt-4) performance in vulnerability
detection, vulnerability type identification, severity estimation,
and patch recommendation. In addition, we conduct com-
parative analyses with other state-of-the-art language models,
specifically fine-tuned for software vulnerability-related tasks.

II. RELATED WORK

Recently, researchers have been investigating the applicabil-
ity of ChatGPT for software vulnerability tasks. Cheshkov et
al. [4] investigated the base ChatGPT (gpt-3.5-turbo) per-
formance for vulnerability prediction and classification us-
ing 120 samples across five different CWE-IDs. Zhang et
al. [21] designed suitable prompts for ChatGPT to enhance
its performance for vulnerability prediction. On the other
hand, Napoli et al. [14] investigated ChatGPT’s performance
for the smart contracts vulnerability correction task. Some
previous studies have evaluated ChatGPT’s performance for
the automated program repair (APR) task where the model
was asked to fix general bugs [17], [18], [20]. In particular,
Pearce et al. [17] assessed large language models’ performance
for the program repair, however, the most advanced two
versions of ChatGPT were not included in their experiments.

III. PROBLEM STATEMENT & PROMPT DESIGN

In this section, we introduce the problem statements of the
four vulnerability tasks, i.e., (1) function and line-level soft-
ware vulnerability prediction (SVP), (2) software vulnerability
classification (SVC), (3) severity estimation, and (4) automated
vulnerability repair (APR). After each problem statement, we
illustrate how we design the prompts for ChatGPT to perform
the prediction task.

A. Prompt ChatGPT for Software Vulnerability Prediction

Problem. We formulate vulnerability prediction as a binary
classification task where the model predicts whether the input
source code function is vulnerable. For vulnerable functions,
we formulate the line-level vulnerability localization task as a
ranking problem, where the model ranks vulnerable statements
on the top to reduce the manual analysis workload for security
analysts.
Prompt. We present example prompts for function and line-
level vulnerability prediction in Fig 1. In the initial prompt,
we provide ChatGPT with a task description focusing on
function-level predictions, along with a clear instruction for
return. In the subsequent prompt, we inform ChatGPT that
the given function is vulnerable and request it to rank the top
10 most vulnerable-prone statements from the given function.

We provide a return template, anticipating that ChatGPT will
generate an output consisting of a line number accompanied
by its corresponding code statement as predictions.

Fig. 1. An example prompt for function and line-level vulnerability prediction.

B. Prompt ChatGPT for Software Vulnerability Classification

Problem. We formulate vulnerability classification as a multi-
class classification task where the model identifies a CWE-ID
for an input vulnerable function. Common Weakness Enumer-
ation Identifier (CWE-ID) is a community-developed list of
common software weaknesses and vulnerabilities [5], which
allows security professionals to categorize and communicate
about security issues in a standardized manner.
Prompt. We present example prompts for CWE-ID classi-
fication in Fig 2. In particular, we inform ChatGPT that the
input function is vulnerable and request it to identify its cor-
responding CWE-ID. Additionally, we limit the classification
scope by providing a list of potential CWE-IDs to ensure a
fair comparison with other fine-tuned models.

Fig. 2. An example prompt for CWE-ID classification.

C. Prompt ChatGPT for Vulnerability Severity Estimation

Problem. We formulate vulnerability severity estimation as a
regression task where the model predicts a continuous value
based on input vulnerable functions to estimate their severity.
CVSS (Common Vulnerability Scoring System) severity score
is a standardized numerical system used to assess the serious-
ness of security vulnerabilities in software and systems. We
use CVSS version 3.1 ranging from 0 to 10.
Prompt. We present example prompts for severity estimation
in Fig 3. We inform ChatGPT that the input function is
vulnerable and specify the CVSS version and the output range
to make it generate a severity estimation for the given function.



Fig. 3. An example prompt for severity estimation.

D. Prompt ChatGPT for Automated Vulnerability Repair

Problem. We formulate vulnerability repair as a sequence-
to-sequence generation task where the model generates corre-
sponding repair patches for input vulnerable functions.
Prompt. We present example prompts for vulnerability repair
in Fig 4. Given that model outputs are repair patches designed
by Chen et al. [3] instead of the complete repaired program,
we provide three repair examples in each prompt to make
ChatGPT comprehend our repair task. We then request Chat-
GPT to create repair patches for vulnerable functions using
the templates provided in those examples.

Fig. 4. An example prompt for automated vulnerability repair.

IV. EXPERIMENTAL DESIGN AND RESULTS

In this section, we introduce our experimental datasets
selected for each vulnerability task followed by the parameter
settings and hardware environment used to reproduce the
baseline language models fine-tuned for vulnerability tasks.
Finally, we present our experimental approach along with the
results for each research question.

A. Experimental Datasets

We use the Big-Vul dataset constructed by Fan et al. [6] to
evaluate vulnerability prediction (RQ1), classification (RQ2),
and severity estimation (RQ3). Big-Vul has been widely
adopted for software vulnerability tasks [9], [10], which
comprises 188k C/C++ functions gathered from 348 Github
projects, encompassing 3,754 code vulnerabilities across 91
types. Each vulnerable function is labeled with a CWE-ID
and a CVSS severity score. Its data distribution mirrors real-
world conditions, with a vulnerable-to-benign function ratio
of 1:20. Similar to previous studies [9], [10], we split the data
into 80% for training, 10% for validation, and 10% for testing.

For the automated vulnerability repair (RQ4), we leverage
the Big-Vul and CVEFixes [1] datasets pre-processed by
Chen et al. [3]. The dataset has been adopted to evaluate
vulnerability repair approaches [3], [11], which contains 5.5k
pairs of vulnerable functions and their repair patches. Similar
to previous studies [3], [11], we split the data into 70% for
training, 10% for validation, and 20% for testing.

B. Parameter Settings and Execution Environment

We replicate the baseline methods using the original au-
thors’ specified parameter settings, running experiments on
a Linux machine equipped with an AMD Ryzen 9 5950X
processor, 64 GB RAM, and an NVIDIA RTX 3090 GPU.
The ChatGPT prompting was completed via paid API access
provided by OpenAI [15].

C. Experimental Results

(RQ1) How accurate is ChatGPT for function and line-level
vulnerability predictions?
Approach. To answer this RQ, we focus on the function and
line-level vulnerability predictions and compare ChatGPT (i.e.,
gpt-3.5-turbo and gpt-4) with three other fine-tuned baseline
language models as follows:

1) AIBugHunter: A recently proposed deep learning-based
software security tool that utilizes fine-tuned language
models [9], [11] to perform vulnerability prediction,
classification, severity estimation, and repair [10].

2) CodeBERT: A language model originally pre-trained for
tasks related to source code, CodeBERT underwent pre-
training using the Codesearchnet dataset [13], encom-
passing various programming languages. CodeBERT has
demonstrated its capability to effectively perform tasks
associated with source code [7].

3) GraphCodeBERT: A language model that was also pre-
trained on the Codesearchnet dataset to perform source
code-related tasks. Notably, when forming the input for
the model, GraphCodeBERT considers the data flow
graph in addition to source code tokens [12].

Similar to the previous study [9], we report F1-measure,
precision, and recall to evaluate function-level performance.
For line-level performance, we report top-10 accuracy that
measures the percentage of vulnerable functions where at
least one actual vulnerable line appears in the model’s top-
10 ranking. This metric has been previously used to evaluate
the prediction of line-level vulnerability prediction [9].
Result. Fig 5 presents the experimental results of function
and line-level vulnerability prediction. ChatGPT failed to
accurately predict at the function level with an F1-measure
of 10% and top-10 accuracy of 25% at the statement level.
The leading-edge gpt-4 with 1.7 trillion parameters achieves an
F1-measure of 29% along with a top-10 accuracy of 65%. In
contrast, the fine-tuned AIBugHunter achieves an F1-measure
of 94% along with a top-10 accuracy of 99% with only
120 million parameters. Despite gpt-4’s extensive model size
and pre-training data, it faced challenges in generalizing the
vulnerability prediction task without undergoing fine-tuning.
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Fig. 5. (RQ1) The experimental results of function-level and line-level vulnerability prediction. (↗) For all metrics, higher = better.
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Fig. 6. (RQ2) The experimental results of vulnerability type (i.e., CWE-ID)
classification. (↗) Higher Multiclass Accuracy = better.

These results highlight that the vulnerability prediction task
requires models to learn domain-specific knowledge (e.g.,
vulnerability patterns) and fine-tuning is still required for large
language models despite their significant model size.

(RQ2) How accurate is ChatGPT for vulnerability types
classification?

Approach. To answer this RQ, we focus on the vulnerability
classification task where we aim to identify CWE-IDs for vul-
nerable functions. We compare ChatGPT (i.e., gpt-3.5-turbo
and gpt-4) with three fine-tuned baseline language models
introduced in RQ1. Additionally, we include VulExplainer [8]
which leverages language models with a distillation framework
to mitigate the data imbalances in the CWE-ID classification
task. Similar to previous studies [8], [10], we use the multiclass
accuracy measure to evaluate the performance of each method.
Result. Fig 6 presents the experimental results of CWE-
ID classification. The accuracy of ChatGPT in correctly
identifying CWE-IDs for vulnerable functions is limited,
standing at a mere 13%. The gpt-3.5-turbo and gpt-4
achieve 13%-20% accuracy while the fine-tuned language
model baselines achieve 62%-65%. These findings suggest
that the accurate identification of CWE-ID for a vulnerable
function requires the model to learn to map specific patterns
(e.g., buffer overflow) in vulnerable functions to a CWE-
ID. However, ChatGPT has not adequately acquired such
knowledge during the pre-training phase of ChatGPT so a fine-
tuning stage is still required to boost its performance.
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Fig. 7. (RQ3) The experimental results of vulnerability severity estimation.
(↘) Lower MSE, MAE = better.

(RQ3) How accurate is ChatGPT for vulnerability severity
estimation?

Approach. To answer this RQ, we focus on predicting the
CVSS score of vulnerable functions. We compare ChatGPT
(gpt-3.5-turbo and gpt-4) with the three baselines introduced
in RQ1, where CodeBERT has been shown to be effective for
severity estimation [10]. Similar to the previous study [10],
we use Mean Squared Error (MSE) and Mean Absolute Error
(MAE) to assess the performance of each method.
Result. Fig 7 presents the experimental results of the severity
score estimation. ChatGPT failed to accurately estimate
the CVSS severity score, resulting in an MSE of 5.4
and an MAE of 1.84. The gpt-3.5-turbo and gpt-4 have
MSE of 5.4 and 5.85 while the fine-tuned language model
baselines achieve 1.8-1.86. Similar to vulnerability prediction
and classification tasks, accurately estimating severity scores
also demands software security expertise that ChatGPT has
not acquired during its extensive pre-training phase, hindering
its ability to provide accurate predictions in this context.

(RQ4) How accurate is ChatGPT for automated vulnerability
repair?

Approach. To answer this RQ, we focus on generating vul-
nerability repair patches for vulnerable functions. We compare
ChatGPT (i.e., gpt-3.5-turbo and gpt-4) with the three baseline
methods introduced in RQ1. Notably, AIBugHunter leverages
the VulRepair [11] model for repair patches generation, which
achieves state-of-the-art results in the vulnerability repair
problem. Similar to previous studies [3], [11], we use the per-
centage of perfect prediction (%PP) measure to assess the per-
formance of each method. Only if the generated repair patches
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Fig. 8. (RQ4) The experimental results of automated vulnerability repair. (↗)
Higher %PP, BLEU, METEOR = better.

are identical to the ground-truth patches, we count it as a
correct prediction. The %PP is computed as total correct predictions

total testing samples .
We use greedy decoding to return one repair candidate for
fine-tuned language models and ensure a fair comparison with
ChatGPT. Furthermore, we incorporate BLEU and METEOR
scores to evaluate the degree of similarity between the patches
produced by the model and the actual patches.
Result. Fig 8 presents the experimental results of the vulner-
ability repair. ChatGPT failed to generate correct repair
patches for all of the vulnerable functions in our testing
data. In contrast, the fine-tuned language model baselines can
correctly repair 7%-30% of the testing function. The BLEU
and METEOR scores further demonstrate that repair patches
generated using baseline methods exhibit greater proximity to
the true patches compared to those generated through Chat-
GPT methods. These results indicate that vulnerability repair
is a more challenging task compared with other vulnerability
prediction tasks, where ChatGPT struggle to generate correct
repairs for vulnerable functions. Thus, a fine-tuning step using
domain-specific data is crucial for ChatGPT to generalize its
ability for the vulnerability repair task.

V. CONCLUSION

In this paper, we empirically evaluate the performance of
prompting two versions of ChatGPT (gpt-3.5-turbo and gpt-4)
for four common vulnerability tasks: locating vulnerabilities,
identifying vulnerability types, estimating severity scores, and
suggesting repair patches. We compare the performance of
ChatGPT with other pre-trained language models that have
significantly smaller model sizes than ChatGPT but have been
fine-tuned to perform software vulnerability prediction tasks.
Through an assessment encompassing over 190,000 real-world
C/C++ functions, ChatGPT yielded the least favorable out-
comes across all vulnerability-related tasks, notably struggling
to generate accurate patches for the vulnerability repair task.
These findings highlight the imperative of possessing security
expertise in addressing software vulnerability prediction tasks,
a facet not assimilated by ChatGPT during its extensive pre-
training phase. Thus, an additional round of fine-tuning stands
as a pivotal requirement for ChatGPT to effectively generalize
and undertake software vulnerability tasks.
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