Empirical Software Engineering (2024) 29:4
https://doi.org/10.1007/510664-023-10346-3

®

Check for

updates
AIBUGHUNTER: A Practical tool for predicting, classifying
and repairing software vulnerabilities

Michael Fu' . Chakkrit Tantithamthavorn'@® - Trung Le' - Yuki Kume' .
Van Nguyen' - Dinh Phung’ - John Grundy'

Accepted: 25 May 2023
© The Author(s) 2023

Abstract

Many Machine Learning(ML)-based approaches have been proposed to automatically detect,
localize, and repair software vulnerabilities. While ML-based methods are more effective
than program analysis-based vulnerability analysis tools, few have been integrated into mod-
ern Integrated Development Environments (IDEs), hindering practical adoption. To bridge
this critical gap, we propose in this article AIBUGHUNTER, a novel Machine Learning-
based software vulnerability analysis tool for C/C++ languages that is integrated into the
Visual Studio Code (VS Code) IDE. AIBUGHUNTER helps software developers to achieve
real-time vulnerability detection, explanation, and repairs during programming. In partic-
ular, AIBUGHUNTER scans through developers’ source code to (1) locate vulnerabilities,
(2) identify vulnerability types, (3) estimate vulnerability severity, and (4) suggest vulner-
ability repairs. We integrate our previous works (i.e., LineVul and VulRepair) to achieve
vulnerability localization and repairs. In this article, we propose a novel multi-objective
optimization (MOO)-based vulnerability classification approach and a transformer-based
estimation approach to help AIBUGHUNTER accurately identify vulnerability types and esti-
mate severity. Our empirical experiments on a large dataset consisting of 188K+ C/C++
functions confirm that our proposed approaches are more accurate than other state-of-the-art
baseline methods for vulnerability classification and estimation. Furthermore, we conduct
qualitative evaluations including a survey study and a user study to obtain software practition-
ers’ perceptions of our AIBUGHUNTER tool and assess the impact that AIBUGHUNTER may
have on developers’ productivity in security aspects. Our survey study shows that our
AIBUGHUNTER is perceived as useful where 90% of the participants consider adopting our
AIBUGHUNTER during their software development. Last but not least, our user study shows
that our AIBUGHUNTER can enhance developers’ productivity in combating cybersecurity
issues during software development. AIBUGHUNTER is now publicly available in the Visual
Studio Code marketplace.

This article belongs to the Topical Collection: Mining Software Repositories (MSR)

B Chakkrit Tantithamthavorn
chakkrit@monash.edu

Extended author information available on the last page of the article

Published online: 20 November 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10346-3&domain=pdf
http://orcid.org/0000-0002-5516-9984

4 Page2of33 Empirical Software Engineering (2024) 29:4

Keywords Vulnerability prediction - Vulnerability localization - Vulnerability
classification - Vulnerability repair

1 Introduction

Software vulnerabilities are weaknesses in an information system, security procedures,
internal controls, or implementations that could be exploited or triggered by a threat
source Johnson et al. (2011). Such unresolved weaknesses result in extreme security or
privacy risks. According to the research conducted by WhiteSource (2019) on open source
vulnerabilities in the past 10 years (including multiple sources like the National Vulnerability
Database (NVD), security advisories, GitHub issue trackers etc.), C has the highest number
of vulnerabilities out of all seven reported languages (i.e., C, PHP, Java, JavaScript, Python,
C++, Ruby), accounting for 47% of all reported vulnerabilities. Buffer errors (e.g., CWE-
119: Improper Restriction of Operations within the Bounds of a Memory Buffer) are the
most common vulnerability in C and C++. It is worth noting that this group of vulnerabilities
related to memory corruption could often have critical consequences such as system crashes
and sensitive information disclosure. In particular, our proposed software vulnerability clas-
sification approach can correctly identify 79% of the CWE-119 buffer error as shown in
Table 2 (see Rank 17).

Recently, the shift-left testing concept (i.e. move software testing earlier in project time-
lines) has been proposed to try to perform software testing at earlier stages of development,
instead of testing applications during late phases of development. Thus, vulnerabilities related
to fundamental features, such as buffer errors, could ideally be found and fixed earlier.
DevSecOps has also been proposed to extend the idea of DevOps by integrating security into
DevOps initiatives (Zettler, 2022). DevSecOps aims to examine application security from
the start of development by automating some security gates and selecting the right tools to
continuously integrate security in the DevOps workflow. For example, program analysis(PA)-
based tools can be integrated into IDEs, such as Visual Studio Code (VS Code), to detect
such vulnerabilities during coding. However, these methods usually rely on pre-defined vul-
nerability patterns and struggle to detect specific types of vulnerability. Croft et al. (2021)
demonstrated that Machine Learning(ML)-based techniques are more accurate than PA-
based tools in detecting file-level vulnerabilities. Our own previous study showed that our
ML-based LineVul approach is more accurate than the PA-based Cppcheck tool (Marjaméki,
2007) on line-level vulnerability prediction (Fu and Tantithamthavorn, 2022b; Pornprasit
and Tantithamthavorn, 2021, 2022). ML-based methods learn vulnerability patterns based
on historical vulnerability data instead of relying on pre-defined patterns. Thus, ML-based
approaches can capture more kinds of vulnerabilities and be more easily extended as new
vulnerabilities emerge. PA-based tools, such as Checkmarx (Checkmarx, 2006), have been
integrated into software development workflow to support security diagnosis during devel-
opment. However, to date, ML-based tools have not been integrated as security tools to help
detect security issues during software development.

In this article, we propose an ML-based software vulnerability analysis tool, AIBUGHUNTER,
to bridge the critical gap between ML-based security tools and software practitioners.
AIBUGHUNTER is integrated into a modern IDE (i.e., VS Code) — to fulfil the concept of
shift-left testing and to support real-time security inspection during software development.
In particular, given developers’ source code written in C/C++, our AIBUGHUNTER can (1)
locate vulnerabilities, (2) classify vulnerability types, (3) estimate vulnerability severity,
and (4) suggest repairs. We integrate our previous work LineVul (Fu and Tantithamtha-

@ Springer

Empirical Software Engineering (2024) 29:4 Page 3 of 33 4

vorn, 2022b) and VulRepair (Fu et al., 2022) for AIBUGHUNTER to achieve automated
vulnerability localization and repairs. In this article, we further propose a multi-objective
optimization (MOQO)-based approach to optimize the multi-task learning scenario and help
our AIBUGHUNTER accurately identify vulnerability types (i.e., CWE-IDs, and CWE-Types)
and explain the detected vulnerabilities. In addition, a transformer-based approach is pro-
posed to help AIBUGHUNTER estimate the vulnerability severity (i.e., CVSS Score) which
could be beneficial for the prioritization of security issues.

We evaluate our proposed MOO-based vulnerability classification and severity estima-
tion approaches on a large dataset that consists of 188k+ C/C++ functions including various
vulnerability types and severity. We found that our MOO-based vulnerability classification
approach outperforms other baseline methods and achieves the accuracy of 65% (demon-
strated in RQ1) and 74% (demonstrated in RQ2) for classifying CWE-ID and CWE-Types
respectively. In addition, our transformer-based severity estimation approach outperforms
other baseline methods and achieves the best mean squared error (MSE) and mean absolute
error (MAE) measures (demonstrated in RQ3). We evaluate our AIBUGHUNTER through
qualitative evaluations including (1) a survey study to obtain software practitioners’ per-
ceptions of our AIBUGHUNTER tool; and (2) a user study to investigate the impact that
our AIBUGHUNTER could have on developers’ productivity in security aspects. Our survey
study shows that predictions provided by AIBugHunter are perceived as useful by 47%-86%
of participated software practitioners and 90% of participants will consider adopting our
AIBUGHUNTER. Moreover, our user study indicates that AIBUGHUNTER could save devel-
opers’ time spent on security analysis that could potentially enhance security productivity
during software development (demonstrated in RQ4).

The main contributions of this work include:

1. AIBUGHUNTER, a novel ML-based software security tool for C/C++ that is integrated
into the VS Code IDE to bridge the gap between ML-based vulnerability prediction
techniques and software developers and achieve real-time security inspection;

2. A quantitative evaluation of AIBUGHUNTER on a large dataset showing its high precision
and recall;

3. A qualitative survey study of AIBUGHUNTER with 21 software practitioners demonstrat-
ing both its practicality and potential acceptance;

4. A qualitative user study of AIBUGHUNTER with 6 software practitioners demonstrating
AIBUGHUNTER could enhance practitioners’ productivity in combating security issues
during software development;

5. A multi-objective optimization approach for vulnerability classification that optimizes
the multi-task learning scenario for classifying the vulnerability types for vulnerable
functions written in C/C++; and

6. A transformer-based approach to estimate vulnerability severity for vulnerable functions
written in C/C++.

We make available our datasets, scripts including data processing, model training, model
evaluation, and experimental results related to our approach in a GitHub repository: (https://
github.com/awsm-research/AIBugHunter). Additionally, AIBUGHUNTER is available at VS
Code marketplace (https://marketplace.visualstudio.com/items?itemName=AIBugHunter.
aibughunter).

The rest of this article is organized as follows. Section 2 presents a high-level overview
of our AIBUGHUNTER. Section 3 presents our approach to predicting vulnerability types
and severity. Section 4 presents our studied datasets, our experimental setup, and our first
three research questions along with their results. Section 5 presents a qualitative evaluation

@ Springer

https://github.com/awsm-research/AIBugHunter
https://github.com/awsm-research/AIBugHunter
https://marketplace.visualstudio.com/items?itemName=AIBugHunter.aibughunter
https://marketplace.visualstudio.com/items?itemName=AIBugHunter.aibughunter

4 Page4of33 Empirical Software Engineering (2024) 29:4

of AIBUGHUNTER including a survey study and a user study to answer the last research
question. Section 6 discloses the threats to validity. Section 7 discusses the related works.
Section 8§ draws the conclusions.

2 AIBUGHUNTER: Our Approach

We provide an overview of our AIBUGHUNTER, an ML-based vulnerability prediction tool
as a plug-in in Visual Studio Code (VS Code). The main purpose of our AIBUGHUNTER is
to bridge the gap between ML-based vulnerability prediction techniques and software devel-
opers by providing a security plug-in in IDE to present more security information during
software development.

2.1 AIBUGHUNTER Security Tool

As a security tool integrated into VS Code, AIBUGHUNTER first scans the file opened by
developers and parse the whole file into multiple separate functions. For each function, our
AIBUGHUNTER performs the following 4 steps:

1. Localize the vulnerable lines (LineVul);

2. Classify the vulnerability types (proposed in this paper);

3. Estimate the vulnerability severity (proposed in this paper); and
4. Suggest the repair patches (VulRepair).

where LineVul (Fu and Tantithamthavorn, 2022b) locates vulnerable lines; our approach
predicts types and severity; and VulRepair (Fu et al., 2022) suggests repairs.

In AIBugHunter, we use LineVul and VulRepair from our previous works. These models
were trained using the extensive Big-Vul dataset offered by Fan et al. (2020) and the CVEFixes
dataset provided by Bhandari et al. (2021). We illustrate both of them as follows:

LineVul is among the first to predict line-level vulnerabilities using the transformer model
and its self-attention mechanism. Given a C/C++ function as input, first, LineVul leverages
a BPE tokenizer to tokenize the function into subword tokens and mitigate the out-of-vocab
problem. Second, LineVul leverages transformer encoders (Vaswani et al., 2017) to learn the
representation of those tokens, which can better tackle the long-term dependencies among
tokens than previously proposed RNN-based methods (Li et al., 2021). Third, LineVul uses
a linear classification head to predict function-level vulnerability prediction based on the
learned representations. LineVul uses intrinsic model interpretation to localize line-level
vulnerabilities. In particular, LineVul summarizes the self-attention scores of each line in
the function and ranks the line scores to place potentially vulnerable lines on the top. Our
previous work (Fu and Tantithamthavorn, 2022b) has demonstrated that LineVul achieves
the best accuracy for both function-level and line-level vulnerability prediction and is the
most cost-effective approach to localize line-level vulnerabilities when compared with other
baseline methods.

VulRepair is among the first to leverage a large pre-trained language model for the auto-
mated vulnerability repair (AVR) problem. Given a vulnerable C/C++ function as input,
instead of using word-level tokenization as previous work (Chenetal., 2021), VulRepair lever-
ages a BPE tokenizer to tokenize the function into subword tokens and address the potential
OOV problem. VulRepair uses a pre-trained encoder-decoder TS architecture where encoders
encode the representation of the vulnerable function and decoders generate the corresponding
repair patches. In particular, the relative position encoding of TS used by VulRepair improves

@ Springer

Empirical Software Engineering (2024) 29:4 Page 5 of 33 4

the absolute position encoding of the vanilla transformer used in previous work (Chen et al.,
2021). VulRepair was evaluated using the human-written repairs as ground-truth labels where
a repair generated by VulRepair is considered correct if it is identical to the labels. Our pre-
vious work (Fu et al., 2022) has demonstrated that VulRepair substantially improves the
performance of previous works for the AVR problem.

2.2 Example Usage

Consider the situation where an opened file contains one function written in C++, shown in
Fig. 1. This example uses a real-world “out-of-bounds write” vulnerability (CWE, 2009) that
is considered the most dangerous vulnerability in 2021 (CWE, 2021a). Figure 1 shows the
“unPremulSkImageToPremul” function. AIBUGHUNTERhas analyzed this and considered it
as a vulnerable function. This is due to the variable type “size_t” being misused, causing an
“out-of-bounds write” vulnerability (i.e., CWE-787) at line number 9.

As shown in Fig. 1, AIBUGHUNTER first takes the whole function as an input and sends it
to its backend models, LineVul (Fu and Tantithamthavorn, 2022b). The LineVul algorithm
identifies that the 9th line of the “unPremulSkimageToPremul” function is a vulnerable line, as
annotated by (D. Our approach further classifies this function as a vulnerability of CWE-787,
shown as @, with a Base type shown in ®.

This function is predicted as being of a high severity with a CVSS score of 7. This is
shown as @. Finally, we use our backend tool, VulRepair (Fu et al., 2022), to generate repair
patches. This patch will be used to replace the vulnerable line. The developer can select this
option by clicking on the “Quick Fix” button, shown as ®.

2.3 AIBUGHUNTER Implementation

We developed our AIBUGHUNTER extension using the VS Code Extension API pro-
vided by Microsoft to gain symbol information and utilize other VS Code IDE features.
AIBUGHUNTER is mainly written in TypeScript following the boilerplates provided by the
VS Code extension generator. Being a plain VS Code extension, our package’s operations
are driven by a Node.js engine. In what follows, we introduce the front-end and back-end
implementation details of AIBUGHUNTER.

2.3.1 Front-End Implementation

The UI elements of AIBUGHUNTER are defined by the VSCode API provided by Microsoft,
the backend of which is Node.JS, and is interacted using the TypeScript language. When

sk _sp<SkI e 3 »Premul (SkImage* input) {
ageInfo info SkIma th(), input->height(),
1)] Line 9 may lnerable with C 7 (Out-of-bounds Write | Abstract

es data past the end, or before the beginning, of the intended buffer

NETTL TR (o)

>(input->width()) * info.bytesPerPixel

paper.cpp

[Severity: High (7.11)] Line 9 may be vulnerable with CWE-787 (Out-of-bounds Write| | Abstract Type: Base)

10 }

Fig. 1 The user interface of our AIBUGHUNTER

@ Springer

4 Page6of33 Empirical Software Engineering (2024) 29:4

a user opens a C/C++ file, AIBUGHUNTER extracts each function from the source code
using the “symbols” information available through VSCode API, and builds a list of parsed
functions to be passed into the DL models introduced in the following section. The back-end
will return the generated predictions using the API provided, and the relevant information is
displayed on the UI as “diagnostics”. This enables the extension to indicate the specific line
to fix using underlines, display hover messages, provide a link to the CWE page, provide
a “Quick Fix” button for repair candidates, and offer other error messages in the interface.
AIBUGHUNTER presents its vulnerability predictions and explanatory information as shown
in Fig. 1.

2.3.2 Back-End Implementation

The back end consists of three main steps as summarized in Fig. 2. First, the data preparation
step to construct data for DL models. Second, the DL. models inference step for (1) locat-
ing line-level vulnerabilities, (2) classifying vulnerability types, (3) estimating vulnerability
severity, and (4) suggesting repairs. Third, the post-prediction processing step is used to
prepare information and present it in the UL

Step 1: Data Preparation. When a C/C++ file is opened, VSCode automatically analyzes
it and generates a “DocumentSymbol”, which is a collection of symbols in the document
such as variables, classes, and functions. We preserve only the collection of functions to
construct a list of functions parsed from the document, where each parsed function undergoes
formatting to remove comments. Note that all the modifications are recorded as a position
delta to correctly map the prediction results to the original code.

Step 2: DL Model Inference. The model inference consists of two steps to obtain all the
predictions to present in the front end as described below:

Step 2a. Send the list of functions from the data preparation step to the line-level vulner-
ability detection model’s inference API endpoint (or flag in local inference mode). This will
return a JSON which tells if individual functions are vulnerable or not (binary), and scores
on each line of the function that determines which line the modifications are required to fix
the vulnerability.

Step 2b. For functions that were predicted vulnerable in the previous step are now sent
to three additional DL models. For each function, the first model will return a CWE-ID
indicating the vulnerability type; the second model returns a CVSS score indicating the
severity; and the third model returns an annotated piece of “patch code” as suggested repairs.
Step 3: Post-Prediction Processing. All the predictions from the model inference step are
processed according to the user configuration. Additionally for functions predicted as vulner-
able, we fetch the vulnerability description from MITRE ATT&CK Corporation (2022) based
on the predictions to provide in-depth details of the predicted vulnerability and an accessi-
ble link to the official page of the specific CWE-ID. Finally, the organized information is
displayed on the interface via the VSCode extension APL

. - - - - 5. |-
1~ B > > o

A C/C++ File DocumentSymbol List of Functions DL Models Predictions,

28

Post Processing

Fig.2 The back-end implementation of our AIBUGHUNTER

@ Springer

Empirical Software Engineering (2024) 29:4 Page 7 of 33 4

@ @\
@Subword Tokenization (BPE| \ES/

Static sk_sp LineVul Model i » Vulnerable Vulnerable Line
<Skimage> ... [“Static”, “sk”, ...]
- - @

8- > ‘'@
Merge Subword (2b
A C/C++ function Operations Vocabularies Tsoil;:;:i CWE Model . CWE-ID & CWE-Type

— a ~r
NC
Subword :
Tokenizer

AIBUGHUNTER

or

i

Iﬁ

v
> M D

| CVSS Severity Score Software

i Developers

VulRepair Model | ————

i

i Suggested Patches

Fig.3 An overview architecture of our approach

3 Learning to Predict Vulnerability Type and Severity

Our approach is a vulnerability prediction framework consisting of three different inference
tasks. As shown in Fig. 3, given a C/C++ function, we first tokenize raw input into code tokens
through Byte Pair Encoding (BPE) in Step (. In Step @, the tokenized function is then input to
a LineVul model proposed in our previous work (Fu and Tantithamthavorn, 2022b) to predict
vulnerable lines in the input function. If vulnerable lines exist in the function, our approach
further predicts vulnerable types (i.e., CWE-ID and CWE-Type) and severity (i.e., CVSS

severity score) of the vulnerable function as shown in step . Furthermore, the vulnerable
function is also input to the VulRepair (Fu et al., 2022) model to generate suggested repair

patches as shown in step @ Finally in Step ®, AIBUGHUNTER integrates the predictions
from LineVul, our approach, and VulRepair models and present them to software developers
in the IDE. We refer readers to our previous work (Fu and Tantithamthavorn, 2022b) for more
technical details about BPE tokenization and the Transformer architecture of our approach.

In this section, we introduce key new components in our AIBUGHUNTER approach over
our prior works. Given a vulnerable function, we aim to predict its vulnerability types, where
CWE-ID and CWE-Type are available categorizations provided by CWE (2006). CWE-Type
is a higher-level of vulnerability category, where each CWE-Type may contain multiple
similar CWE-IDs. Since CWE-ID and CWE-Type are highly correlated labels, we learn a
shared CodeBERT model through multi-objective optimization as described in Section 3.1.

To predict the severity of vulnerabilities, we leverage a separate CodeBERT model instead
of sharing the same model with the CWE classification task. This is due to (1) the CVSS
severity score being a regression task that is different from the CWE classification; and (2)
the CVSS severity score being determined using metrics provided by CVSS (2003) rather
than based on vulnerability types. Thus the vulnerability types and severity scores are not
necessarily highly correlated. In the following paragraphs, we describe in detail our approach
for CWE classification, followed by severity regression.

3.1 Multi-Objective CWE Classification

In this section, we introduce our novel multi-objective approach that is used to predict the
CWE-ID and CWE-Type of a vulnerable function.

@ Springer

4 Page8of33 Empirical Software Engineering (2024) 29:4

3.1.1 Sequence Representation

As shown in Fig. 4, instead of using only one “[CLS]" token as a normal BERT model, our
approach leverages two special tokens (one “[CLS]" token for CWE-ID classification and
the other “[CLS_TYPE]" token for CWE-Type classification) along with a “[SEP]" token
represents the end of a sequence. All of the special tokens are added during the subword
tokenization process as described in our previous paper (Fu and Tantithamthavorn, 2022b).
The intuition behind using two special tokens for different tasks is the success of DelT.
Touvron et al. (2021) leveraged two special tokens to distill knowledge from a Transformer-
based model for image classification tasks. In DelT, one special token learns from the ground-
truth labels while the other learns from the prediction generated by the teacher model to
distill knowledge from it. Similarly, our CWE-ID class token is responsible for the CWE-ID
prediction and learns from ground-truth labels of CWE-ID while our CWE-Type class token
focuses on CWE-Type prediction and learns from ground-truth labels of CWE-Type.

3.1.2 Two Non-Shared Classification Heads

Similar to DelT (Touvron et al., 2021), our approach uses two non-shared classification heads
to generate predictions for two different tasks. Each classification head consists of two linear
layers with dropout layers in between. Both heads rely on a softmax layer to activate the
probabilities of each label which is the final prediction by our approach. The parameters of
the two heads are non-shared, so they are able to map the representation of their own special
token (i.e., the class token of CWE-ID and CWE-Type) to the prediction without conflicting
with each other.

CWE-ID CWE-Type

oo
e

CWE-ID CWE-Type
Classifier Classifier

@ ®

CWE-ID CWE-Type *
Token Token
CodeBERT
[Feed-Forward Neural Network]
x 12
[Self-Attention

A

{® ® |

CWE-ID CWE-Type SEP
Token Token Code Tokens Token

Fig.4 An overview architecture of multi-objective CWE classification

@ Springer

Empirical Software Engineering (2024) 29:4 Page 9 of 33 4

The reasons for having two non-shared classification heads are (i) the number of classes
for CWE-IDs is different from the number of classes for CWE-Type and (ii) we aim that
each classification head can focus and specialize for each task (CWE-IDs or CWE-Type) to
obtain better performances. Thus, we use separate non-shared heads to classify CWE-IDs
and CWE-Type respectively. In concurring with our design, the experiment results in Fig. 6
show that our multi-objective method with a shared transformer architecture achieves the
best performance among other baseline methods.

3.1.3 Multi-Objective Optimization

The problem solved by our approach can be considered as a multi-task learning (MTL)
problem with an input space of X and a collection of task spaces {y } where T is the number
of tasks. Specifically, we have alarge vulnerability dataset with data points {x;, yl.1 , yi2 }i € [N]
where x; is a vulnerable function, y! is a CWE-ID label, y? is a CWE-Type label, and N is
the number of data points.

To optimize the parameters of a multi-task model, we need to minimize both loss functions
yielded by CWE-ID and CWE-Type labels so the model can infer both labels given the same
input. Although the weighted summation is intuitively appealing as shown in (1), obtaining
such weighted summation of loss functions for multi-task learning requires an expensive grid
search over various scalings or the use of a heuristic such as Chen et al. (2018); Kendall et al.
(2018) to find out the optimal values of W and W,.

Lrotal = W1Lip + Wa2Lrype (D

Alternatively, our approach relies on the approach proposed by Sener and Koltun (2018)
where the MTL problem is formulated as multi-objective optimization (MOO): optimizing
a collection of possibly conflicting objectives. The training objective of our approach can be
specified using a vector-valued loss L:

min L@*",6',6%) =min (L6, 0"), £2(0°",6%)))

where L is the combined cross-entropy (CE) loss (described in (4)) from both tasks computed
by MOO, £ is the CE loss of the CWE-ID classification task, £2 is the CE loss of the CWE-
Type classification, 6" is parameters of shared 12-layer CodeBERT, 8! is parameters of the
CWE-ID classification head, and 6 is parameters of the CWE-Type classification head as
shown in Fig. 4. In short, we aim to minimize all of the parameters (i.e., ° h gl 92) during
gradient descent simultaneously.

To fulfill the objective (2) during the training phase of our approach, we leverage the same
gradient update process as proposed by Sener and Koltun (2018). As shown in Algorithm
1, we first update the task-specific parameters (i.e., 8! and 62) through the gradient descent
algorithm. We then apply the Frank-Wolfe solver (please refer to the original paper written
by Sener and Koltun (2018) for details) to find a common descent direction to satisfy our
training objective. We then apply the solution of the Frank-Wolfe solver to update the shared
parameters (i.e., 0°") through the gradient descent algorithm. With such a gradient update
process, all of the parameters (i.e., 0" 9! and 92) can be updated at the same time without
conflicting with each other.

@ Springer

4 Page100f33 Empirical Software Engineering (2024) 29:4

Algorithm 1 Gradient Update Equations for MTL.
1: forr =1to T do

2: o =0! — nV: £t (9”’, 0h) > Gradient descent on task-specific parameters(i.e., 61, 02)
3: end for

4: al, e al = FRANKWOLFESOL VER(9) > Solve to find a common descent direction
5. 950 =gsh _ ZL] o' Vysi L1 g%h, gty & Gradient descent on shared parameters(i.e., 65/)

3.2 CVSS Severity Score Estimation

We used Version 3.1 of the CVSS score which has a range of 0-10. Below, we provide two
concrete examples and present the difference between high and low severity scores. It can be
seen that the CVSS scores were assigned based on different measures such as confidentiality
impact, integrity impact, availability impact, access complexity, authentication, and gained
access etc. A low CVSS score (see Example 1 in Fig. 5) usually has None or Partial impact
to the confidentiality, integrity, and availability aspects of the software system. In contrast,
a high CVSS score (see Example 2 in Fig. 5) usually corresponds to higher impact such
as Complete impact where there could be total information disclosure, total compromise of
system integrity, and total shutdown of the affected resource.

As the pre-trained CodeBERT model has been demonstrated its effectiveness for
vulnerability-related tasks (Fu and Tantithamthavorn, 2022b; Hin et al., 2022), we rely on
CodeBERT to obtain word embeddings for each vulnerable function. We add a linear layer as
aregression head on top of CodeBERT, which returns one value for each vulnerable function
as a severity score prediction. We minimize the Mean Square Error (MSE) loss as described
in (3) to train the severity regression model:

1 .
Luse =~ (i =3 ©)

i=1

where y; is a ground-truth severity score and y; is a prediction of the model.

1 - A vulnerable function with a low CVSS score. 2-Avul ble fi ion with a high CVSS score.
Example Code void ahci_uninit(AHCIState *s) Example Code const Chapters:Display* Chapters::Atom:GetDisplay(int index) const
{
g_free(s->dev) if (index < 0)

} retum NULL.
if (index>= m_displays_count)
retum NULL;
return m_displays + index.

}

CVSS Score 19 CVSS Score 10.0

Confidentiality impact | None (There is no impact to the confidentiality of the system.) Confidentiality impact | Complete (There is total information disclosure, resulting in all
system files being revealed.)

Integrity impact None (There is no impact to the integrity of the system) Integrity Impact Complete (There is a total compromise of system integrity. There is
complete loss of system protection, resulting in the entire system
being compromised.)

Availability Impact (There is reduced performance or interruptions in resource Availability Impact Complete (There is a total shutdown of the affected resource. The
availability) attacker can render the resource completely unavailable.)
Access Complexity (The access conditions are somewhat specialized. Some Access Complexity | Low (Specialized access conditions or extenuating circumstances do
preconditions must be satistified to exploit) notexist Very lile knowledge or skill is required to exploit)
Authentication Not required (Authentication is notrequired to exploit the wuinerability) Authentication Not required (Authentication is not required to exploit the wulnerability)
Gained Access None Gained Access None
Vulnerability Type(s) | Denial Of Service Vulnerability Type(s) | Denial Of CodeO cormuption

Fig.5 Two concrete examples of high and low CVSS severity scores

@ Springer

Empirical Software Engineering (2024) 29:4 Page 11 of 33 4

4 A Quantitative Evaluation of AIBUGHUNTER

In this section we present a quantitative evaluation of AIBUGHUNTER. We present our three
research questions, our studied dataset, our experimental setup, and answers to our first three
research questions along with their experimental results.

4.1 Research Questions

The empirical evaluation of LineVul and VulRepair backend components used in our
AIBUGHUNTER have been presented in our previous works. To evaluate our new proposed
approach for vulnerability type and severity prediction, we conduct a new set of experiments
to compare our proposed method with existing baseline approaches. Through an extensive
evaluation of our approach on 8,783 C/C++ vulnerable functions including 88 different types
of vulnerabilities, we answer the following three research questions:

RQI1: How accurate is our approach for predicting vulnerability IDs (i.e., CWE-IDs)?
We focus on CWE-ID multi-class classification and compare our approach with four
baseline models. Our approach achieves a multiclass accuracy of 0.65, which is 10%-
141% more accurate than other baseline approaches with a median improvement of
86%.

RQ2: How accurate is our approach for predicting vulnerability types (i.e., CWE
abstract types)? We focus on CWE-Type multiclass classification and compare our
approach with the same four baseline models described in RQ1. Our approach achieves
a multiclass accuracy of 0.74, which is 3%-45% more accurate than other baseline
approaches with a median improvement of 23%.

RQ3: How accurate is our approach for predicting vulnerability severity?We focus on
the CVSS severity score regression task and compare our approach with 3 baseline
approaches. Our approach achieves an MSE of 1.8479 and an MAE of 0.8753, which
are better than the baseline approaches.

4.2 Studied Dataset

To ensure a fair comparison with the previous work, we use the existing benchmark
dataset (Fan et al., 2020). We did not further parse data from 2020 to 2022 as previous
studies did not publish scripts to collect datasets. When implementing our data collection
scripts, the collected data may not be the same as used by previous works, posing potential
threats to internal validity. Nevertheless, we encourage future studies to evaluate our approach
on more recent datasets once available.

As this article is an extended version of our previous work (Fu and Tantithamthavorn,
2022b), we use the same experimental dataset (i.e., Big-Vul (Fan et al., 2020)) to evaluate the
performance of our approach on vulnerable functions. The Big-Vul dataset is collected from
348 open-source Github projects, which includes 91 different CWEs from 2002 to 2019, and
nearly 11k of C/C++ vulnerable functions. Given a large number of vulnerable functions from
diverse projects and timeframes, the Big-Vul dataset is a suitable dataset to evaluate whether
our vulnerability classification and CVSS score estimation approaches can generalize well
to the diverse samples. Other vulnerability datasets such as the Devign dataset (Zhou et al.,
2019) are not selected because the CWE-ID and CVSS score information are not provided.

@ Springer

4 Page120f33 Empirical Software Engineering (2024) 29:4

4.3 Experimental Setup

Data Splitting. Similar to our previous work (Fu and Tantithamthavorn, 2022b), we split
the dataset into 80% of training data, 10% of validation data, and 10% of testing data. We
randomly split the data into three similar distributions so different vulnerability types are
equally represented in training, validation, and testing sets. We also ensure that CWE-IDs
appearing in the testing set should also appear in the training set.

Data Preprocessing. To satisfy the scenario of CWE classification tasks and the severity
score regression task, we only keep the vulnerable functions with known CWE-ID, CWE-
Type, and CVSS scores. Table 1 presents the descriptive statistics of our studied dataset after
removing non-vulnerable functions. After data filtering, we keep 8,783 C/C++ functions with
88 different CWE-IDs, 6 different CWE-Types, and CVSS scores (labelled based on CVSS
version 3.1 (NVD, 2019)) ranging from 1.2-10.0. Note that CWE-IDs and CWE-Types are
many-to-one mappings where each CWE-ID has one CWE-Type but each CWE-Type may
correspond to many CWE-IDs.

Multi-objective Classification Model Implementation. We leverage the pre-trained Code-
BERT model as a backbone encoder to generate the shared representation of CWE-ID and
CWE-Type classification tasks using the Transformers library in Python. We then add two
classification heads on top of the backbone, one predicting the CWE-ID and the other
predicting the CWE-Type. Note that the parameters in the backbone are shared by both
tasks, however, the parameters in each classification head are task-specific. We leverage two
cross-entropy loss functions (i.e., CEjp and CE7y),) and implement the multi-objective
optimization process based on the implementation provided by Sener and Koltun (2018) to
fine-tune the CodeBERT model under the multi-task setting of CWE-ID and CWE-Type.
The multi-objective loss is implemented as described in Section 3.1.3 where each cross-
entropy loss is implemented based on (4). We use the PyTorch library to update the model
and optimize the loss functions.

Lee(p,q) ==Y px) log,(x) “

Severity Regression Model Implementation. We leverage the pre-trained CodeBERT
model with a regression head for CVSS score regression. The model is implemented with
the Transformers library and trained using the PyTorch library. We use the Mean Squared
Error (MSE) loss to update the model during training as (3).

Hyperparameter Settings for Fine-Tuning. We use the default setting of CodeBERT, i.e.,
12 Transformer Encoder blocks, 768 hidden sizes, and 12 attention heads. We follow the same
fine-tuning strategy provided by Feng et al. (2020). During training, the learning rate is set to
2e-5 with a constant schedule. We use backpropagation with AdamW optimizer (Loshchilov
and Hutter, 2018) which is widely adopted to fine-tune Transformer-based models to update

Table 1 Descriptive statistics of our studied datasets that describes the distribution of the severity score, and
the distributions of cardinalities of CWE-ID and CWE-Type

Mean Median Std. Ist Quantile 3rd Quantile Min Max
CWE-ID Cardinality 100 9 281 3 49 1 2127
CWE-Type Cardinality 1255 415 1491 138 1827 1 4437
Severity Score 6.18 6.8 1.95 4.6 7.5 1.2 10.0

@ Springer

Empirical Software Engineering (2024) 29:4 Page 13 of 33 4

the model and minimize the loss function. The best model is selected based on the validation
data, which will perform inference on testing data as final evaluation results.

Execution Environment All of the experiments are run under Ubuntu 20.04 system with an
AMD Ryzen 9 5950X CPU with 16C/32T, 64GB RAM, and an NVIDIA GTX 3090 GPU
(24GB of memory).

4.4 Experimental Results
RQ1: How accurate is our approach for predicting vulnerability IDs (i.e., CWE-IDs)?

Approach. To answer this RQ, we focus on CWE-ID multi-class classification and compare
our approach with four baseline models, described as follows:

1. BERT models pre-trained on natural language (i.e., BERT-base (Devlin et al., 2019)),
which have been adopted for CWE classification tasks (Das et al., 2021; Wang et al.,
2021).

2. BERT models pre-trained on programming language (i.e., CodeBERT (Feng et al.,
2020)), which have been applied to software vulnerability prediction (Fu and Tan-
tithamthavorn, 2022b; Thapa et al., 2022; Yuan et al., 2022).

3. BoW+RF uses bag of words as features together with a Random Forest model for CWE-
ID classification (Aota et al., 2020; Wang et al., 2020).

4. BoW+NB uses bag of words as features together with a Naive Bayes model for CWE-ID
classification (Na et al., 2016).

The pre-trained BERT-based language models are selected because previous studies such
as Wang et al. (2021) and Zhu et al. (2022) have used them to achieve promising results on
the CWE-ID classification tasks. The Random Forest and Naive Bayes models are selected
because they are important machine learning-based methods for CWE-ID classification tasks
proposed in previous studies.

We evaluate our approach based on the multiclass accuracy which is computed as
Correctly Predicted Testing Data
Total Testing Data '

Results. Figure 6 presents the experimental results of our approach and the four baseline
approaches according to the multiclass accuracy.

Our approach achieves an accuracy of 0.65, which is 10%-141% more accurate than
other baseline approaches with a median improvement of 86%. These results confirm
that our approach is more accurate than other baseline approaches for CWE-ID classification.

We use CodeBERT as our backbone architecture, however, our approach outperforms
the CodeBERT model by 6%. Our approach can learn knowledge from two perspectives
based on the class of CWE-ID and the class of CWE-Type where both classes describe the
same vulnerable function. The correlated information between the two kinds of labels further
benefits our method. On the other hand, the CodeBERT method only learns from CWE-ID
labels. In other words, the comparison between our approach and CodeBERT highlights the
advancement of using labels from both tasks (i.e., CWE-ID and CWE-Type) with multi-
objective optimization. In short, our results demonstrate that the multi-task learning with
multi-objective optimization using both CWE-ID and CWE-Type labels outperforms
other baselines that are only trained using CWE-ID label.

We analyze the performance of our approach on 879 testing samples. First, 567 of 879
(65%) are correctly predicted. On the other hand, 312 samples are misclassified. Among
the 312 misclassified samples, we find that 89 of 312 (35%) were predicted as close to the

@ Springer

4 Page140f33 Empirical Software Engineering (2024) 29:4

CWE-ID Multiclass Accuracy (RQ1) CWE-Type Multiclass Accuracy (RQ2)
0.8- 0.8-
74% 72% 2
65%
0.6- 59% 0.6-
50% 52% 51%
0.4- 0.4-
27% 27%
0.2- 0.2-
0.0- 0.0-
! . ! ! ! . . !
o & o Q 2 A & o
o < &% & & ol o
N < <’ & N <
< S & &) S
S B) ®

Fig. 6 (RQI and RQ2) The Multiclass Accuracy of our approach and four other baselines. () Higher
Multiclass Accuracy = Better

ground truth (i.e., incorrectly predict the CWE-ID, but correctly predict the CWE-Type). This
means our approach can at least correctly predict the vulnerability type for 75% % of
testing samples (outperform all other baselines), highlighting the potential usefulness of our
approach in practice.

To further investigate whether our approach can classify dangerous real-world vulnerabili-
ties, we further evaluate our approach on Top-25 most dangerous CWE-IDs (CWE, 2021a) in
the testing set to understand the significance of our approach in the practical usage scenario.

Table 2 presents the accuracy of our approach on Top-25 most dangerous CWE-IDs. We find

Table 2 (RQI Discussion) The Accuracy of our approach for the Top-25 Most Dangerous CWEs (https://
cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html)

Rank CWE-ID Name Accuracy Proportion
1 CWE-787 Out-of-bounds Write 43% 9/21
2 CWE-79 Cross-site Scripting 29% 2/7
3 CWE-125 Out-of-bounds Read 67% 44/66
4 CWE-20 Improper Input Validation 66% 71/107
7 CWE-416 Use After Free 52% 15/29
8 CWE-22 Path Traversal 0% 0/4
9 CWE-352 Cross-Site Request Forgery 0% 0/1
12 CWE-190 Integer Overflow 68% 21/31
14 CWE-287 Improper Authentication 0% 0/2
15 CWE-476 NULL Pointer Dereference 41% 717
17 CWE-119 Improper Restriction 79% 1807228
18 CWE-862 Missing Authorization 0% 0/1
20 CWE-200 Exposure of Sensitive Info 62% 26/42
22 CWE-732 Incorrect Permission Assignment 86% 6/7
23 CWE-611 Improper Restriction 50% 172
25 CWE-77 Improper Neutralization 0% 0/1
67% 382/566

@ Springer

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

Empirical Software Engineering (2024) 29:4 Page 15 of 33 4

that our approach can correctly predict 67% of the vulnerable functions affected by
the Top-25 most dangerous CWE-IDs, which is better than the average performance of
our approach(i.e., 65%).

In addition, Fig. 7 presents our method’s accuracy for each CWE-ID in the testing set. It
can be seen that the accuracy of our approach is not highly correlated to training or testing
data frequencies. Our approach performs well on some of the CWE-IDs with low frequencies
such as CWE-754 while having challenges generalizing to other low frequencies CWE-IDs
such as CWE-94. However, those CWE-IDs that cannot be identified by our approaches are
all CWE-IDs rarely occur in the dataset. This highlights the challenge of imbalanced data in
the CWE-ID classification task where some CWE-IDs are common (e.g., CWE-119) and easy
to collect while other CWE-IDs can be rare (e.g., CWE-369) and difficult to collect. Those
rare CWE-IDs are more prone than common CWE-IDs to be misclassified by our approach
due to not-enough training samples. Thus, future researchers may explore new techniques to
solve this imbalance problem.

Lastbut not least, we found that the complexity of vulnerabilities may also affect the perfor-
mance of our approach. In particular, our approach achieves an accuracy of 86% for the least
complex CWE-IDs that are under the CWE-Type of the “class weakness”. Class weaknesses
typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property,
and resource (CWE, 2021b). For instance, the class weakness of “Uncontrolled Resource
Consumption" (CWE-400) describes an issue (Uncontrolled) with a behavior (Consumption)
associated with any type of resource. However, our approach only achieves an accuracy of
51% for the most complex CWE-IDs that are under the CWE-Type of the “variant weakness”.
Variant weaknesses typically describe issues in terms of 3 to 5 of the following dimensions:
behavior, property, technology, language, and resource (CWE, 2021c¢). For instance, the vari-
ant weakness of “Use After Free” (CWE-416) describes an issue (Referencing memory after
it has been freed) with a specific resource (Memory) with specific languages (C/C++). These
results highlight the challenge of classifying those complex vulnerability types such as the
variant weakness.

100

- Normalized Training Frequency
——— Normalized Testing Frequency
Testing Accuracy

Multiclass Accuracy

SL-3MD

£19-3,
61-3

”

CWE-IDs

Fig. 7 (RQ1 Discussion) Our method’s Multiclass Accuracy of CWE-ID classification for each CWE-ID in
the testing set. The accuracy is shown in percentage

@ Springer

4 Page160f33 Empirical Software Engineering (2024) 29:4

RQ2: How accurate is our approach for predicting vulnerability types (i.e., CWE
abstract types)?

Approach. To answer this RQ, we focus on CWE-Type multiclass classification and compare
our approach with the same four baseline models described in RQ1. We adopt the same
measure as mentioned in RQ1 to evaluate our approach.

Results. Figure 6 presents the experimental results of our approach and the four baseline
approaches according to the multiclass accuracy.

Our approach achieves an accuracy of 0.74, which is 3%-45% more accurate than
other baseline approaches with a median improvement of 23 %. These results confirm that
our approach is more accurate than other baseline approaches for CWE-Type classification.

Our approach performs the best, which is the only model that leverages both CWE-Type
and CWE-ID labels during training. The improvement of our approach compared with other
baseline approaches is 3%-45% which is not as significant as the improvement demonstrated
in RQ1 (10%-141%). The difference in improvements implies that while leveraging both
labels can benefit performance for both CWE-ID and CWE-Type classification tasks, our
method is more beneficial for the CWE-ID classification.

In addition, Table 3 presents detailed accuracy for each CWE-Type. It can be seen that the
performance depends on the number of samples and varies for each type. Nevertheless, our
approach has the best overall accuracy and is the only approach that achieves at least 50% of
accuracy for each CWE-Type.

In Section 3.1.3, we proposed leveraging Multi-Objective Optimization (MOO) instead of
taking the weighted summation of loss functions for gradient descent. We now further evaluate
whether MOO can help our approach learn better on multi-task learning. Specifically, we
compare our approach (with using MOO) with a variant method (without using MOO) that
leverages a weighted summary of the loss function during gradient descent. The loss function
of the weighted summary version of our approach is described as (1). We set W1 and W2
to 0.5 so both tasks contribute equally to the total loss. To ensure a fair comparison, we
only switch the MOO component of our approach and adopt the same model architecture,
hyperparameters, and training strategy for both approaches.

Figure 8 presents the accuracy of our approach, the variant approach, and the single-task
CodeBERT. We find that the multi-task learning framework is always better than the
CodeBERT which only learns from a single task, and our approach performs the best
on both tasks. Our approach can achieve an accuracy of 63%-65% and 73%-74% on CWE-
ID and CWE-Type classification respectively while single-task CodeBERT only achieves an
accuracy of 59% and 71%. This result confirms that (1) leveraging multi-task learning on two
correlated tasks may benefit the model performance on both tasks and (2) the MOO approach

Table 3 (RQ2) The Multiclass Accuracy of each CWE type for all of the approaches evaluated in RQ2

Methods CWE Abstract Types

Class Category Variant Base Pillar Deprecated Overall
Ours 85.55% 67.01% 62.86% 60.8% 52.94% 50% 74%
BERT-base 84.42% 68.53% 34.29% 55.11% 64.71% 50% 72%
CodeBERT 78.78% 63.95% 42.86% 71.02% 52.94% 30% 1%
BoW+RF 74.49% 29.44% 14.29% 33.52% 5.88% 10% 52%
Naive Bayes 99.77% 3.55% - - - - 51%

@ Springer

Empirical Software Engineering (2024) 29:4 Page 17 of 33 4

CWE-ID Multiclass Accuracy CWE-Type Multiclass Accuracy

£ 63% 74% 73% 71%

59%

&
&
O b@

A
&
&
& &

(4
& s

Fig. 8 The Multiclass Accuracy of our approach, our approach w/o MOO, and single-task CodeBERT. ()
Higher Multiclass Accuracy = Better

used by our approach can learn a model with higher accuracy than the weighted summary
approach.

Furthermore, we analyze the impact of function length on our approach for CWE-ID
and CWE-Type classification. According to Table 4, when the function length is short, e.g.,
consisting of 0-100 tokens, our tool can have better 84% and 85% accuracy respectively. How-
ever, the performance decreases as functions become longer, for functions consisting of more
than 500 tokens, the accuracy becomes 57% and 72% respectively. These results highlight
the challenge of tackling long sequences for vulnerability classification tasks. Thus, future
researchers should further explore techniques that can classify difficult longer vulnerable
functions.

RQ3: How accurate is our approach for predicting vulnerability severity?

Approach. To answer this RQ, we focus on the CVSS severity score regression task and
compare our approach with 3 baseline approaches as follows:

1. BERT models pre-trained on natural language (i.e., BERT-base (Devlin et al., 2019)).
2. BoW+RF uses bag of words as features together with a Random Forest model for severity
score regression (Aota et al., 2020; Wang et al., 2020).

Table 4 (RQ2 Discussion) The analysis of how different function lengths affect the multi-class accuracy of
our approach for CWE-ID and CWE-Type prediction tasks

Function Length (Tokens) CWE-ID Accuracy CWE-Type Accuracy
0-100 84% 85%
101-200 72% 81%
201-300 69% 71%
301-400 60% 69%
401-500 61% 70%
>500 57% 2%

Note. Function lengths counted by number of tokens in a tokenized function

@ Springer

4 Page180f33 Empirical Software Engineering (2024) 29:4

3. BoW+LR uses bag of words as features together with a Linear Regression model for
severity score regression.

We evaluate our approach based on Mean Squared Error (MSE) 3 and Mean Absolute Error
(MAE) where MSE penalizes the predictions that are far from true values through the square
of Euclidean distance and MAE measures the exact distance between predicted values and
ground-truth values as MAE = % Sy =il

Results. Figure 9 presents the experimental results of our approach and the three baseline
approaches according to the MSE and MAE loss.

Our approach achieves an MSE of 1.8479 and an MAE of 0.8753, which are better
than all of the baseline approaches. These results confirm that our approach can predict
the most accurate severity scores.

Our approach achieves 0.1440 and 0.7674 less MSE than the baselines using traditional
Bag of Words and Machine Learning algorithms (i.e., BOW+RF, BoW+LR). This result
highlights the advancement of leveraging a BPE tokenization and pre-trained word embed-
ding with a Transformer-based architecture. The word embeddings with the self-attention
mechanism (Vaswani et al., 2017) in the Transformer model can learn the semantic features
of input source code while the traditional BoW approach only considers the word frequencies
when representing source code. Thus, our approach learns a more accurate mapping between
a vulnerable function and its corresponding severity score.

Our approach achieves 0.0141 less MSE and 0.0193 less MAE than the BERT-base
(pre-trained on natural language) model. This result confirms that leveraging a BERT
architecture pre-trained using programming languages (our approach) can improve the one
pre-trained using natural language.

To investigate whether each approach can accurately predict the severity of vulnerable
functions, we map the CVSS score into four classes of severity based on the CVSS protocol,
i.e., low, medium, high, and critical as detailed in Fig. 10. Our approach achieves an accuracy
of 0.71, which is 6%-18% better than other baselines. The result confirms that our approach
can correctly predict the severity class for 71% of vulnerable functions in testing data.

To further investigate our approach’s performance, we present our approach’s confusion
matrix in Fig. 10. It can be seen that our approach neither estimates low severity as critical (last
row, first column) nor estimates critical severity as low (first row, last column). Furthermore,

Mean Squared Error (RQ3) Mean Absolute Error (RQ3)
2.6153 1.2608
1.0743
i 1.9919 1.0-
1.8479 1.862 R - 0.8946
I I : I I
0.0-
| | |
e @ <
& 3 Y N
() /,o'b o$x 0{&(&/.Q’D o$x 0$x

Fig. 9 (RQ3) The Mean Squared Error (MSE) and Mean Absolute Error (MAE) of our approach and three
other baselines. (\,) Lower MSE, MAE = Better

@ Springer

Empirical Software Engineering (2024) 29:4 Page 19 of 33 4

CVSS Multiclass Accuracy (RQ3)

o . Confusion Matrix of Our Approach
Low | Medium | High | Critical
941 Low 33 22 6 0
. Medium) 374 99 3
o High 88 144 1
i Critical 14 14 71
Oo‘:’ \"’é' Ri: _\/é

v N N
O O
pe < <

(=] o K2}

Ko

Fig. 10 (RQ3 Discussion) The left part is the multi-class accuracy of the CVSS score for each approach
evaluated in RQ3. The right part is the confusion matrix of our approach. Note that each class of CVSS is
directly mapped from the CVSS score as shown at the bottom of the confusion matrix table

the last column shows that when our approach predicts a critical severity, the accuracy is 91%.
Nevertheless, the most common error of our approach is predicting samples to the close class
such as estimating a medium severity as high severity, which highlights the challenge of the
CVSS severity estimation task.

5 Qualitative Evaluations of AIBUGHUNTER

We conducted qualitative evaluations including (1) a survey study to obtain software practi-
tioners’ perceptions of our AIBUGHUNTER tool; and (2) a user study to investigate the impact
that our AIBUGHUNTER could have on developers’ productivity in security aspects, to answer
the following research question:

RQ4: According to our survey study, each kind of vulnerability prediction provided by our
AIBUGHUNTER is perceived as useful by 47%-86% of participated software practi-
tioners. Furthermore, 90% of participants consider adopting our AIBUGHUNTER if it
is freely available in an IDE without conditions. Moreover, our user study shows that
our AIBUGHUNTER could save developers’ time spent on security analysis that could
enhance security productivity during software development.

5.1 A Qualitative Survey Study

Following (Kitchenham and Pfleeger, 2008), we conduct our study according to the following
steps: (1) design and develop a survey, (2) recruit and select participants, and (3) verify data
and analyze data. We explain the detail of each step below.

5.1.1 Survey Design

Step 1: Design and development of the survey: We design our survey as a cross-sectional
study where participants provided their responses at one fixed point in time. The survey
consists of 6 closed-ended questions and 5 open-ended questions. For closed-ended questions,
we use multiple-choice questions and a Likert scale from 1 to 5. Our survey consists of two
parts: preliminary questions and developers’ perceptions of Al-based software vulnerability
predictions.

@ Springer

4 Page200f33 Empirical Software Engineering (2024) 29:4

Part I: Demographics. The survey starts with a question, (“(D1) What is your role in your
software development team?”), to ensure that our survey results are obtained from the right
target participants. Then, the survey is followed by a demographics question, (‘“(D2) What
is the level of your professional experience?”), to ensure our survey is distributed across
software practitioners with different levels of professional experience.

Part II: Vulnerability predictions generated by our AIBUGHUNTER. We then ask about
software practitioners’ perceptions of Al-based vulnerability predictions. Specifically, we
present an example visualization of a prediction generated by AIBUGHUNTER as shown in
Fig. 1. Then, we ask four questions, i.e., (“(Q1) How do you perceive the usefulness of the
recommended location of the vulnerability (i.e., line number)?”), (“(Q2) How do you perceive
the usefulness of the vulnerability severity prediction?”), (“(Q3) How do you perceive the
usefulness of the vulnerability type prediction (i.e., CWE-ID and CWE-Type)?”), and (“(Q4)
How do you perceive the usefulness of the “Quick Fix” button which will replace a vulnerable
line with the suggested repair on click?”’) Each question is followed by an open question for
the rationale.

We use Google Form to conduct our survey in an online setting. Each participant is pro-
vided with an explanatory statement on the landing page that describes the purpose of the
study, why the participant is chosen for this study, possible benefits and risks, and confiden-
tiality. The survey takes approximately 10 minutes to complete and is completely anonymous.
Our survey has been rigorously reviewed and approved by the Monash University Human
Research Ethics Committee (MUHREC ID: 35047).

Step 2: Recruit and select participants: We recruit developers that have software devel-
opment experience through LinkedIn and Facebook platforms. We send a survey invitation to
the target groups via direct message. To mitigate potential bias introduced by the participant
groups, we selected participants with different software engineering-related professions, dif-
ferent lengths of professional experience, and different organizations. Finally, we obtained a
total of 22 responses over a two-week period of recruitment.

Step 3: Verify data and analyze data: To verify the completeness of the response in
our survey (i.e., whether all questions were appropriately answered), we manually review
all of the open-ended questions. Finally, we obtain a set of 21 valid responses. We present
the results of closed-ended responses in a Likert scale with stacked bar plots. We manually
analyze the responses to the open-ended questions to better understand the in-depth insights.

5.1.2 Survey Results

Figure 11 summarizes the survey results, we describe each question in detail in the following.
Respondent demographics. Figure 12 presents the overall respondent demographic. In

terms of the profession of the participants, 48% (%—(1)) of them are full-stack software engi-
neers, 19% (24—]) of them are security analysts, while the other 33% are software engineering
researchers, machine learning engineers, etc. In terms of the level of their professional expe-
rience, 52% (%) of them have less than 5 years of experience, 24% (25—1) have 6-10 years of
experience, while the other 24% have more than 10 years of experience.

(Q1) How do you perceive the usefulness of the recommended location of the vulnera-
bility (i.e., line number)?

Findings. 86% of the respondents perceived that the prediction of the vulnerability
location is useful due to various reasons:

@ Springer

Empirical Software Engineering (2024) 29:4 Page 21 of 33 4

| Response .Strongly not useful Not useful Neutral Useful .Strongly useful |

(Q1) How do you perceive the usefulness of the recommended location of the vulnerability (i.e., line number)?

2 | B o |
0

100 50 50 100

(Q2) How do you perceive the usefulness of the vulnerability severity prediction?

24% 19% 29% 14%
| [

100 50 0 50 100

(Q3) How do you perceive the usefulness of the vulnerability type prediction (i.e., CWE-ID and CWE Type)?

100 50 0 50 100

(Q4) How do you perceive the usefulness of the "Quick Fix" button which will replace a vulnerable line with the
suggested repair on click?

100 50 0 50 100

Would you consider adopting Al-based vulnerability predictions if they are integrated into modern software
development IDEs (e.g., VSCode) for free with no conditions?

5% [B7 o I -)
100 50 0 50 100

Fig. 11 (Q1-Q4) A summary of the survey questions and the results obtained from 21 participants

— Explicitly localize the vulnerability (R1: I think it is useful to know which line does the
vulnerability locate., R7: It can help you quickly identify where the vulnerability is., R15:
It is helpful to know the reason for vulnerability and line number.)

— Reduce time spent on code review (R4: Speed to fix for developers., R11: This would
decrease code review time when I want to check for security breaches., R12: This is
something it would take me a lot of time debugging to figure out.)

— Support debugging process (R6: Been useful in debugging code, R9: Helps with quick
resolution of bugs/vulnerabilities.)

(Q2) How do you perceive the usefulness of the vulnerability severity prediction?
Findings. 47% of the respondents perceived that the prediction of the vulnerability
severity score is useful due to various reasons:

— Prioritization of vulnerability repairs (R3: Having it will allow me to prioritize fixing
high-impact vulnerabilities before looking at things that don’t matter as much., R8:

Profession of Participants Professional Experience of Participants

24.0%

33.0%

SE Researcher more than 10y

or
. —— 4s0%
ML Engineer

—— 520%

4

24.0%

¥

M Full-stack Software Engineer [l Security Analyst SE Researcher/ML Engineer M less than Sy Ml 6-10y more than 10y

19.0%

Fig. 12 The demographics of our survey participants in terms of their profession and professional experience

@ Springer

4 Page220f33 Empirical Software Engineering (2024) 29:4

Vulnerability score will help me prioritize the fix., R11: This would help me prioritize
which part of the code I should fix first.)

— Risk management (R4: Modeling business risk is very useful for overall software devel-
opment planning., R9: Determines the magnitude of the vulnerability against the risks
involved., R13: Just like vulnerability scanning tools, it is helpful to know how bad it is
and decide the further steps, so yes, it is useful.)

(Q3) How do you perceive the usefulness of the vulnerability type prediction (i.e., CWE-
ID and CWE-Type)?

Findings. 72 % of the respondents perceived that the predictions of CWE-ID and CWE-
Type are useful due to various reasons:

— Help understands the vulnerability (R3: It is important to understand what the vulner-
ability is before you fix it., R9: Helps to identify common weaknesses and resolve them
easily., R11: This would help me understand which kind of security breach I might be
facing., R15: It helps understand the problem., R19: Easier to know what the problem
is.)

— Align with security practices (R4: Aligns well with security practices., R13: A quick
classification would help solve the problem more efficiently.)

(Q4) How do you perceive the usefulness of the “Quick Fix’ button which will replace
a vulnerable line with the suggested repair on click?

Findings. 71% of the respondents perceived that the “Quick Fix” button that suggests
the vulnerability repair is useful due to various reasons:

— Reduce time spent on vulnerability repairs (R6, R15: It saves time., R9: Save hours to
resolve an issue., R11: This would save a lot of time. I can also modify the suggested
codes if I want to.)

— Help with vulnerability repair implementation (R12: Having a potential fix helps me
think through the fix I would like to implement even if I do not use the suggested fix.)

Summary. Our survey study with 21 software practitioners found that all kinds of vulner-
ability predictions provided by our AIBUGHUNTER are perceived as useful. Specifically,
the vulnerable line prediction reduces the time required to locate vulnerability while sever-
ity score prediction helps developers prioritize their workloads. Moreover, the prediction
of the vulnerability type helps developers understand the vulnerability and the repair rec-
ommendation suggested by the “Quick Fix” button helps developers come up with repair
implementation. Finally, we found that 90% of the respondents consider adopting an
Al-based vulnerability prediction approach such as AIBUGHUNTER if it is publicly
available for free in a modern IDE (e.g., Visual Studio Code), highlighting the practical need
for our Al-based vulnerability prediction approach.

5.2 A Preliminary User Study

We conducted a preliminary user study to assess the impact that AIBUGHUNTER may have on
developers’ productivity in security analysis. To do so, we choose single-subject experimental
designs as our research methodology—a type of research methodology characterized by
repeated assessment of a particular phenomenon (often a behavior) over time. The single-
subject experiment is useful when researchers are attempting to observe the behavior of
an individual or a small group of individuals and wishes to document that observation. In

@ Springer

Empirical Software Engineering (2024) 29:4 Page 23 of 33 4

particular, we run the user study with two groups, i.e., a control group (i.e., the group of
participants that do not have access to AIBUGHUNTER) and a treatment group (i.e., the group
of participants that have access to AIBUGHUNTER). First, we assign a vulnerable C/C++
function to a participant to perform given tasks. The tasks are to locate, estimate severity,
explain its type, and suggest repairs. In a well-designed experiment, all variables apart from
the treatment should be kept constant between the two groups, allowing us to correctly
measure the entire effect of the treatment without interference from confounding variables.
With this methodology, our results will not be affected by different participants’ expertise and
task difficulty (which is commonly affected by randomized control trials). In what follows,
we illustrate our user study design followed by the results.

5.2.1 User Study Design

(Step 1) Design and develop a user study. Our user study is face-to-face where each
participant participated individually. Our user study consists of three parts, (1) demo-
graphic questions, (2) user study, and (3) survey questions to seek feedback after using
AIBUGHUNTER.

In the demographic questions, we asked about the participants’ education and experience
in software engineering and software security to ensure that we approach the right target
group of participants.

In the user study, we used a real-world vulnerable C function in our experiment (Renaud,
2018). The jpeg_size function from a PDF generation library caused a buffer overread vul-
nerability (i.e., CWE-125) due to an inappropriate data bounding check. In particular, we
designed our main experiment into two parts. The participants were asked to diagnose the
vulnerable C function without using our AIBUGHUNTER tool in the first part while they were
asked to diagnose the vulnerable function with the help of our AIBUGHUNTER tool in the
second part. In each part, the participants were required to complete four tasks within 15 min-
utes, i.e., (1) locate vulnerability, (2) explain the vulnerability type, (3) estimate vulnerability
severity, and (4) suggest repairs.

In the survey questions, we asked about the participants’ satisfaction with our AIBUGHUNTER
using a Likert scale ranging from 1 to 5 followed by an open-ended question for justification.
Last but not least, our experiment has been rigorously reviewed and approved by the Monash
University Human Research Ethics Committee (MUHREC ID: 36037).

(Step 2) Recruit and select participants. We recruited software developers and
researchers that have software engineering and/or software security expertise. To ensure
the diversity of our participants, we select participants from a diverse set of professional
experiences and occupations. Finally, we recruited a total of 6 participants to participate in
our user study. Each participant will receive a gift card of $20 as a token of appreciation.

(Step 3) Conduct the user study. We conducted the user study as mentioned in Step 1.
We also video-recorded during the user study with permission from the participants. Finally,
for each participant, we analyzed the time spent on each task between the two groups (i.e.,
control vs treatment). Then, we manually analyzed the responses to the open-ended questions
to better understand the in-depth insights from the participants.

5.2.2 User Study Results

Participant Demographics. The education level of our participants varies from bachelor,
master, to Ph.D. degrees, while the professional experience in software engineering and

@ Springer

4 Page240f33 Empirical Software Engineering (2024) 29:4

software security varies from a few months to 10 years, ensuring that the results are not
bounded to specific groups of participants.

Main Findings. Our AIBUGHUNTER can reduce the time spent on detecting, locating,
estimating, explaining, and repairing vulnerabilities from 10-15 minutes to 3-4 min-
utes (see Fig. 13). Without using AIBUGHUNTER, the results show that the majority of the
participants cannot provide accurate answers to the given tasks, which indicates that the vul-
nerability analysis task is challenging and time-consuming. With the use of AIBUGHUNTER,
the results show that all of the participants were able to provide accurate answers to the given
tasks within 4 minutes. This finding implies that AIBUGHUNTER could possibly enhance
developers’ productivity in combating cybersecurity issues during the software development
lifecycle. Last but not least, all of the participants rated our AIBUGHUNTER as satisfied or
highly satisfied due to reasons as follows

P1: It is seamlessly integrated into my development environment.

P3: It exceeds my expectations for automated tools.

— P4: Detect the vulnerability down to line-level and provide CWE information.
PS: Identify the vulnerability fast.

5.3 The implications of AIBUGHUNTER to researchers and practitioners

In this section, we discuss the broader implications of our AIBUGHUNTER tool for researchers
and practitioners. For practitioners, our AIBUGHUNTER tool can help security practitioners
locate vulnerabilities, identify vulnerability types, estimate vulnerability severity, and suggest
vulnerability repairs. These Al-powered security intelligence features can produce signifi-
cant benefits to practitioners. This includes potentially increasing developers’ productivity,
increasing the security of their software systems, and reducing overall software develop-
ment costs. For researchers, our AIBUGHUNTER tool is among the first proof-of-concept
Al-powered security intelligence tool with numerous features combined into one tool. Many
static analysis tools can only perform vulnerability detection, not repairs. Instead, we present
how such important features could be integrated into a VS Code Extension. The results of

Demographics Test W/O AlBugHunter With AlBugHunter
% 3 4 - ~ ™ < - ~ [< é
£ & £ sl sl 5| 5| 5|35 35| %/|8
5| § 8 ° elel el @l el el 8l
> > o0
P1| 6 0 Bachelor Don't know 8 g 10 12 1 2 3 3 5
P2 [10 | 1 Master Knows 5 7 9 10 1 1 2 2)
P3 |10 | 3 Bachelor Knows 5 5] 8 11 1 1 2 2 5
P4 | 4 (05 Bachelor Knows N/A 14 14 N/A 1 1 1 3 4
P5 |10 | 3 PhD Knows 5 5] 7 10 3 1 3 4 5
P6 | 5 2 Bachelor Knows 12 12 13 15 1 1 1 4 4
SE: Software Engineering Correct Answer Incorrect Answer
SS: Software Security CWE: Common Weakness Enumeration

Fig. 13 The experimental results of our user study with six participants. Wherein the first task was to locate
the vulnerability, the second task was to explain the vulnerability type, the third task was to estimate the
vulnerability severity, and the fourth task was to suggest repairs. The time was measured in minutes and the
satisfaction ranges from 1 (highly dissatisfied) to 5 (highly satisfied)

@ Springer

Empirical Software Engineering (2024) 29:4 Page 25 of 33 4

our user study also highlight the usability of our tool and its substantial potential benefits for
the software engineering community.

6 Threats to Validity
6.1 Construct Validity

Threats to the construct validity relate to the potential bias of our survey study and user
study. In our survey study and user study, we recruited 21 and 6 participants respectively
from different professions such as software engineers and security analysts. However, the
results of our two studies could still be biased towards our participants and the results do
not necessarily generalize to other audiences. To mitigate this threat for our survey study,
we spread our survey on social platforms such as Facebook and LinkedIn to ensure diverse
participant demographics. To mitigate this threat for our user study, we recruited software
practitioners with different backgrounds and professional experiences for our user study.

The goal of our survey study and user study is to investigate the usefulness of the tool.
Thus, we only focus on correct predictions when designing our survey study and user study.
However, our AIBUGHUNTER could also return incorrect predictions. Thus, an extended user
study is also required to fully evaluate the impact of our AIBUGHUNTER by including both
correct and incorrect predictions. Since this research question requires a rigorous user study
and a different methodology than we use in this article, we plan to investigate this in future
work.

Furthermore, the maturity of AIBUGHUNTER is still at the early stage of development
and is not yet ready for commercialization. Our user study experiment was conducted as a
preliminary analysis. Thus, the findings are only limited to our studied group, and may not
be generalized to other participants, users, software systems, and organizations. Therefore,
an extensive evaluation of AIBUGHUNTER is still needed.

6.2 Internal Validity

Threats to the internal validity relate to our choice of hyperparameter settings (i.e., opti-
mizer, scheduler, learning rate, etc.) of our models to classify vulnerability types and estimate
vulnerability severity. Finding a set of optimal hyperparameter settings of the CodeBERT
model is extremely expensive due to a large number of trainable parameters in CodeBERT
and the large search space of the Transformer architecture. Thus, we leverage the default set-
ting of CodeBERT as reported by Feng et al. (2020). Hence, our results serve as a lower bound
for our approach, which can be further improved through hyperparameter optimization Tan-
tithamthavorn et al. (2016, 2019). To mitigate this threat, we report the hyperparameter
settings in the replication package to support future replication studies.

6.3 External Validity

Threats to the external validity relate to the generalizability and applicability of our
AIBUGHUNTER. The models used in AIBUGHUNTER were trained using Big-Vul Fan et al.
(2020) and CVEFixes Bhandari et al. (2021) datasets consisting of C/C++ source code. Thus,
our models do not necessarily generalize to other data and programming languages. However,
the AIBUGHUNTER tool could be used with other programming languages as it is designed

@ Springer

4 Page260f33 Empirical Software Engineering (2024) 29:4

to adopt any deep learning models. Nevertheless, future work could explore the effectiveness
of the AIBUGHUNTER tool in other programming languages when other models are used.

7 Related Work

We discuss key previous studies of ML-based vulnerability prediction and multi-task learning
for software vulnerability prediction. We compare our approach with previous methods and
illustrate the difference.

7.1 ML-Based Vulnerability Type Classification

Multiple ML-based approaches have been proposed to automate the CWE-ID classification
task (Aota et al., 2020; Na et al., 2016; Shuai et al., 2013). Shuai et al. (2013) constructed
a Huffman Tree SVM , Na et al. (2016) used a Naive Bayes model , and Aota et al. (2020)
leveraged a Random Forest model to automate the CWE-ID classification task. All of these
approaches rely on the Bag of Words technique, while such a method can embed textual input
features into numeric vector space, such embedding based on word counting can not capture
enough semantic information of input.

Instead of using CVE entries as input, Wang et al. (2020) leveraged ML-based models
to classify CWE-IDs for vulnerability security patches based on the features extracted from
security patches. However, defining such hand-crafted features is time-consuming and may
require much effort.

Recently, researchers have proposed DL-based models that learn the input representation
through neural networks to better capture the semantic features of the input. Aghaei et al.
(2020) proposed ThreatZoom, a Hierarchical Neural Network that considers the hierarchical
nature of CWE-ID. Wang et al. (2021) leveraged the BERT architecture to learn textual
features through the self-attention mechanism.

Previous studies focus on mapping either CVE entries (i.e., vulnerability description) or
security patches into CWE-ID, however, such input features are not available during the
software development stage, thus they are not compatible with our AIBUGHUNTER, where
it requires an ML model to predict based on the source code written by developers. In
contrast, our approach only takes vulnerable source code without any description as input
and predicts the corresponding CWE-ID. Therefore, it can support our AIBUGHUNTER to
generate vulnerability predictions based on the code written by developers.

7.2 Multi-Task Learning for Software Vulnerability Prediction

Spanos and Angelis (2018) used three ML ensemble classifiers to predict CVSS charac-
teristics based on vulnerability description. Le et al. (2021) proposed DeepCVA which uses
multiple GRUs and a shared embedding layer as a multi-task learning framework for commit-
level vulnerability assessment. Gong et al. (2019) leveraged a Bi-LSTM as a shared feature
extractor with multiple classifiers to predict different Common Vulnerability Scoring Sys-
tem (CVSS) characteristics based on vulnerability description. Babalau et al. (2021) used
a shared BERT architecture with two prediction heads to learn a multi-task model which
supports CVSS severity score classification and regression.

Some of these studies leveraged a shared architecture (Babalau et al., 2021; Gong et al.,
2019; Takerngsaksiri et al., 2022) that can learn from labels of different tasks that are cor-

@ Springer

Empirical Software Engineering (2024) 29:4 Page 27 of 33 4

related, hence may help improve the model performance. Nevertheless, all of these studies
relied on the weighted summation of loss functions during gradient descent, i.e., (1) averaging
the loss of each task (Le et al., 2021), (2) tuning loss weights of each task (Babalau et al.,
2021), (3) summarizing loss of each task (Gong et al., 2019). Such a weighted summation
approach may not find the optimal solution when updating the shared model, for instance,
the updated parameters are better for one task but not the other as discussed in Section 3.1.3.
In contrast, our approach finds an optimal collection of parameters that benefits all tasks
simultaneously during gradient descent that can optimize a collection of possibly conflicting
objectives. To the best of our knowledge, this paper is among the first to leverage multi-
objective optimization to learn a DL model for the software vulnerability classification task.

7.3 Explainable Al for Cybersecurity

Explainability is now becoming a critical concern in software engineering. Many researchers
often employed AI/ML techniques for defect prediction (Pornprasit and Tantithamthavorn,
2021, 2022; Pornprasit et al., 2021; Rajapaksha et al., 2021; Wattanakriengkrai et al., 2020),
malware detection (Liu et al., 2022, 2023), and effort estimation (Fu and Tantithamthavorn,
2022a). Yet, little is focused on explaining the vulnerability predictions, which is the focus
of this paper. While these AI/ML techniques can greatly improve developers’ productivity,
software quality, and end-user experience, practitioners still do not understand why such
AI/ML models made those predictions (Jiarpakdee et al., 2020, 2021; Pornprasit et al., 2021;
Rajapaksha et al., 2021; Tantithamthavorn et al., 2021; Tantithamthavorn and Jiarpakdee,
2021b). In particular, the survey study by Jiarpakdee et al. (2021) found that explaining the
predictions is as equally important and useful as improving the accuracy of defect prediction.
However, their literature review found that 91% (81/96) of the defect prediction studies only
focus on improving the predictive accuracy, without considering explaining the predictions,
while only 4% of these 96 studies focus on explaining the predictions.

Although Explainable Al is still a very under-researched topic within the software
engineering community (Cito et al., 2023; Tantithamthavorn and Jiarpakdee, 2021a; Tan-
tithamthavorn et al., 2021, 2023), very few existing XAl studies have shown some successful
usages e.g., in defect prediction. In one example, Wattanakriengkrai et al. (2020) and Porn-
prasit and Tantithamthavorn (2021) employed model-agnostic techniques (e.g., LIME) for
line-level defect prediction (e.g., predicting which lines will be defective in the future), help-
ing developers to localize defective lines in a cost-effective manner. For example, Jiarpakdee
et al. (2020) and Khanan et al. (2020) employed model-agnostic techniques (e.g., LIME)
for explaining defect prediction models, helping developers better understand why a file is
predicted as defective. Rajapaksha et al. (2021) and Pornprasit et al. (2021) proposed local
rule-based model-agnostic techniques to generate actionable guidance to help managers chart
the most effective quality improvement plans.

In contrast to the prior studies, but in the same vein of research in explainable Al for
software engineering, this paper aims to go beyond vulnerability prediction but provides
explanations on the types, the severity, and the suggested repairs.

8 Conclusions

In this article, we propose AIBUGHUNTER, an integration of our proposed software vulnerabil-
ity classification (multi-objective optimization approach) and estimation (a transformer-based

@ Springer

4 Page28o0f33 Empirical Software Engineering (2024) 29:4

approach) approaches and our previous works. Our AIBUGHUNTER is an ML-based vulner-
ability prediction tool to (1) localize vulnerabilities, (2) classify vulnerability types, (3)
estimate vulnerability severity, and (4) suggest repairs. To the best of our knowledge, this
article is among the first to deploy an ML-based vulnerability prediction tool for C/C++
to the VS Code IDE. Our AIBUGHUNTER realizes real-time vulnerability prediction dur-
ing software development, which helps integrate security approaches into the software
development life cycle. Our empirical survey study with 21 software practitioners con-
firms that our AIBUGHUNTER is perceived as useful; and our user study indicates that our
AIBUGHUNTER could help reduce developers’ time spent on security analysis, which could
enhance developers’ productivity in combating security issues during software development.

Acknowledgements Chakkrit Tantithamthavorn was partly supported by the Australian Research Council’s
Discovery Early Career Researcher Award (DECRA) (DE200100941). John Grundy is supported by ARC
Laureate Fellowship (FL190100035).

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data Availibility The data, model training and evaluation scripts that support the findings of this study are
available at: (https://github.com/awsm-research/ AIBugHunter). Our proposed AIBUGHUNTER is available at:
(https://marketplace.visualstudio.com/items?itemName=AIBugHunter.aibughunter).

Declarations

Conflict of Interest Statement The authors of this article declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aghaei E, Shadid W, Al-Shaer E (2020) Threatzoom: Hierarchical neural network for cves to cwes classifi-
cation. In: International Conference on Security and Privacy in Communication Systems, Springer, pp
23-41

Aota M, Kanehara H, Kubo M, Murata N, Sun B, Takahashi T (2020) Automation of vulnerability clas-
sification from its description using machine learning. In: 2020 IEEE Symposium on Computers and
Communications (ISCC), IEEE, pp 1-7

Babalau I, Corlatescu D, Grigorescu O, Sandescu C, Dascalu M (2021) Severity prediction of software vul-
nerabilities based on their text description. In: 2021 23rd International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), IEEE, pp 171-177

Bhandari G, Naseer A, Moonen L (2021) Cvefixes: automated collection of vulnerabilities and their fixes from
open-source software. In: Proceedings of the 17th International Conference on Predictive Models and
Data Analytics in Software Engineering, pp 30-39

Checkmarx (2006) Checkmarx. https://checkmarx.com/

Chen Z, Badrinarayanan V, Lee CY, Rabinovich A (2018) Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. In: International conference on machine learning, PMLR, pp
794-803

Chen Z, Kommrusch S, Monperrus M (2021) Neural transfer learning for repairing security vulnerabilities in
c code. IEEE Transactions on Software Engineering

@ Springer

https://github.com/awsm-research/AIBugHunter
https://marketplace.visualstudio.com/items?itemName=AIBugHunter.aibughunter
http://creativecommons.org/licenses/by/4.0/
https://checkmarx.com/

Empirical Software Engineering (2024) 29:4 Page 29 of 33 4

Cito J, Chandra S, Tantithamthavorn C, Hemmati H (2023) Expert perspectives on explainability. IEEE Soft-
ware 40(3):84-88. https://doi.org/10.1109/MS.2023.3255663

Corporation TM (2022) Att&ck. https://attack.mitre.org/

Croft R, Newlands D, Chen Z, Babar MA (2021) An empirical study of rule-based and learning-based
approaches for static application security testing. In: In the Proceedings of the 15th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM), pp 1-12

CVSS (2003) Common vulnerability scoring system (cvss). https://nvd.nist.gov/vuln-metrics/cvss

CWE (2006) Common weakness enumeration (cwe). https://cwe.mitre.org/index.html

CWE (2009) Cwe-787. https://cwe.mitre.org/data/definitions/787.html

CWE (2021a) 2021 cwe top 25 most dangerous software weaknesses. https://cwe.mitre.org/top25/archive/
2021/2021_cwe_top25.html

CWE (2021b) Cwe abstract type - class weakness. https://cwe.mitre.org/documents/glossary/#Class
9%20Weakness

CWE (2021c) Cwe abstract type - variant weakness. https://cwe.mitre.org/documents/glossary/# Variant
9%?20Weakness

Das SS, Serra E, Halappanavar M, Pothen A, Al-Shaer E (2021) V2w-bert: A framework for effective hierar-
chical multiclass classification of software vulnerabilities. In: 2021 IEEE 8th International Conference
on Data Science and Advanced Analytics (DSAA), IEEE, pp 1-12

Devlin J, Chang MW, Lee K, Toutanova K (2019) Bert: Pre-training of deep bidirectional transformers for
language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp 4171-4186

Fan J, Li Y, Wang S, Nguyen TN (2020) A c/c++ code vulnerability dataset with code changes and cve
summaries. In: Proceedings of the 17th International Conference on Mining Software Repositories, pp
508-512

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D et al (2020) Codebert: A
pre-trained model for programming and natural languages. Findings of the Association for Computational
Linguistics: EMNLP 2020:1536-1547

Fu M, Tantithamthavorn C (2022a) GPT2SP: A Transformer-Based Agile Story Point Estimation Approach.
IEEE Transactions on Software Engineering

Fu M, Tantithamthavorn C (2022b) Linevul: A transformer-based line-level vulnerability prediction. In: 2022
IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), IEEE

Fu M, Tantithamthavorn C, Le T, Nguyen V, Dinh P (2022) Vulrepair: A t5-based automated software vulner-
ability repair. In: In the Proceedings of the ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE)

Gong X, Xing Z, Li X, Feng Z, Han Z (2019) Joint prediction of multiple vulnerability characteristics through
multi-task learning. In: 2019 24th International Conference on Engineering of Complex Computer Sys-
tems (ICECCS), IEEE, pp 31-40

Hin D, Kan A, Chen H, Babar MA (2022) Linevd: Statement-level vulnerability detection using graph neural
networks. In: 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR),
IEEE

Jiarpakdee J, Tantithamthavorn C, Dam HK, Grundy J (2020) An Empirical Study of Model-Agnostic Tech-
niques for Defect Prediction Models. IEEE Transactions on Software Engineering (TSE) p To Appear

Jiarpakdee J, Tantithamthavorn C, Grundy J (2021) Practitioners’ Perceptions of the Goals and Visual Expla-
nations of Defect Prediction Models. In: Proceedings of the International Conference on Mining Software
Repositories (MSR), p To Appear

Johnson A, Dempsey K, Ross R, Gupta S, Bailey D et al (2011) Guide for security-focused configuration
management of information systems. NIST special publication 800(128):16-16

Kendall A, Gal Y, Cipolla R (2018) Multi-task learning using uncertainty to weigh losses for scene geometry
and semantics. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
7482-7491

Khanan C, Luewichana W, Pruktharathikoon K, Jiarpakdee J, Tantithamthavorn C, Choetkiertikul M,
Ragkhitwetsagul C, Sunetnanta T (2020) Jitbot: An explainable just-in-time defect prediction bot. In:
2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, pp
1336-1339

Kitchenham BA, Pfleeger SL (2008) Personal opinion surveys. In: Guide to Advanced Empirical Software
Engineering, Springer, pp 63-92

Le THM, Hin D, Croft R, Babar MA (2021) Deepcva: Automated commit-level vulnerability assessment with
deep multi-task learning. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, pp 717-729

@ Springer

https://doi.org/10.1109/MS.2023.3255663
https://attack.mitre.org/
https://nvd.nist.gov/vuln-metrics/cvss
https://cwe.mitre.org/index.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/documents/glossary/#Class%20Weakness
https://cwe.mitre.org/documents/glossary/#Class%20Weakness
https://cwe.mitre.org/documents/glossary/#Variant%20Weakness
https://cwe.mitre.org/documents/glossary/#Variant%20Weakness

4 Page300f33 Empirical Software Engineering (2024) 29:4

LiY, Wang S, Nguyen TN (2021) Vulnerability detection with fine-grained interpretations. In: 29th ACM Joint
Meeting European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2021, Association for Computing Machinery, Inc, pp 292-303

Liu Y, Tantithamthavorn C, Li L, Liu Y (2022) Explainable Al for android malware detection: Towards
understanding why the models perform so well? In: IEEE 33rd International Symposium on Software
Reliability Engineering, ISSRE 2022, Charlotte, NC, USA, October 31 - Nov. 3, 2022, IEEE, pp 169-180.
https://doi.org/10.1109/ISSRE55969.2022.00026

Liu Y, Tantithamthavorn C, Li L, Liu Y (2023) Deep learning for android malware defenses: A systematic
literature review. ACM Comput Surv 55(8):153:1-153:36. https://doi.org/10.1145/3544968

Loshchilov I, Hutter F (2018) Decoupled weight decay regularization. In: International Conference on Learning
Representations

Marjamiki D (2007) Cppcheck. https://cppcheck.sourceforge.io/

Na S, Kim T, Kim H (2016) A study on the classification of common vulnerabilities and exposures using naive
bayes. International Conference on Broadband and Wireless Computing. Springer, Communication and
Applications, pp 657-662

NVD (2019) Cvss version 3.1. https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Pornprasit C, Tantithamthavorn C (2021) JITLine: A Simpler, Better, Faster, Finer-grained Just-In-Time Defect
Prediction. In: Proceedings of the International Conference on Mining Software Repositories (MSR)

Pornprasit C, Tantithamthavorn C (2022) DeepLineDP: Towards a Deep Learning Approach for Line-Level
Defect Prediction. IEEE Transactions on Software Engineering

Pornprasit C, Tantithamthavorn C, Jiarpakdee J, Fu M, Thongtanunam P (2021) Pyexplainer: Explaining
the predictions of just-in-time defect models. In: 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, pp 407418

Rajapaksha D, Tantithamthavorn C, Bergmeir C, Buntine W, Jiarpakdee J, Grundy J (2021) Sqaplanner: Gen-
erating data-informed software quality improvement plans. IEEE Transactions on Software Engineering

Renaud A (2018) A vulnerable c¢ function. https://github.com/AndreRenaud/PDFGen/commit/
8f9b320267feb386c9974520d %9bcc4531350fff

Sener O, Koltun V (2018) Multi-task learning as multi-objective optimization. Advances in neural information
processing systems 31

Shuai B, Li H, Li M, Zhang Q, Tang C (2013) Automatic classification for vulnerability based on machine
learning. In: 2013 IEEE International Conference on Information and Automation (ICIA), IEEE, pp
312-318

Spanos G, Angelis L (2018) A multi-target approach to estimate software vulnerability characteristics and
severity scores. Journal of Systems and Software 146:152-166

Takerngsaksiri W, Tantithamthavorn C, Li YF (2022) Syntax-aware on-the-fly code completion. arXiv preprint
arXiv:2211.04673

Tantithamthavorn C, Jiarpakdee J (2021a) Explainable Al for Software Engineering. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, pp 1-2

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Automated Parameter Optimization of
Classification Techniques for Defect Prediction Models. In: ICSE, pp 321-332

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2019) The Impact of Automated Parameter
Optimization on Defect Prediction Models. TSE

Tantithamthavorn C, Jiarpakdee J, Grundy J (2021) Actionable analytics: Stop telling me what it is; please tell
me what to do. IEEE Software 38(4):115-120

Tantithamthavorn C, Cito J, Hemmati H, Chandra S (2023) Explainable ai for se: Challenges and future
directions. IEEE Software 40(3):29-33. https://doi.org/10.1109/MS.2023.3246686

Tantithamthavorn CK, Jiarpakdee J (2021b) Explainable ai for software engineering. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, pp 1-2

Thapa C, Jang SI, Ahmed ME, Camtepe S, Pieprzyk J, Nepal S (2022) Transformer-based language mod-
els for software vulnerability detection: Performance, model’s security and platforms. arXiv preprint.
arXiv:2204.03214

Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image trans-
formers & distillation through attention. In: International Conference on Machine Learning, PMLR, pp
10,347-10,357

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser £, Polosukhin I (2017) Attention
is all you need. In: Advances in neural information processing systems (NeurIPS), pp 5998-6008

Wang T, Qin S, Chow KP (2021) Towards vulnerability types classification using pure self-attention: A common
weakness enumeration based approach. In: 2021 IEEE 24th International Conference on Computational
Science and Engineering (CSE), IEEE, pp 146-153

@ Springer

https://doi.org/10.1109/ISSRE55969.2022.00026
https://doi.org/10.1145/3544968
https://cppcheck.sourceforge.io/
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://github.com/AndreRenaud/PDFGen/commit/8f9b3202f67feb386c9974520d%9bcc4531350fff
https://github.com/AndreRenaud/PDFGen/commit/8f9b3202f67feb386c9974520d%9bcc4531350fff
http://arxiv.org/abs/2211.04673
https://doi.org/10.1109/MS.2023.3246686
http://arxiv.org/abs/2204.03214

Empirical Software Engineering (2024) 29:4 Page 31 of 33 4

Wang X, Wang S, Sun K, Batcheller A, Jajodia S (2020) A machine learning approach to classify security
patches into vulnerability types. In: 2020 IEEE Conference on Communications and Network Security
(CNS), IEEE, pp 1-9

Wattanakriengkrai S, Thongtanunam P, Tantithamthavorn C, Hata H, Matsumoto K (2020) Predicting defective
lines using a model-agnostic technique. IEEE Transactions on Software Engineering (TSE)

WhiteSource (2019) What are the most secure programming languages? https://www.mend.io/most-secure-
programming-languages/

Yuan X, Lin G, Tai Y, Zhang J (2022) Deep neural embedding for software vulnerability discovery: Comparison
and optimization. Security and Communication Networks 2022

Zettler K (2022) The devsecop tools that secure devops workflows. https://www.redhat.com/en/topics/devops/
what-is-devsecops

Zhou Y, Liu S, Siow J, DuX, Liu Y (2019) Devign: effective vulnerability identification by learning comprehen-
sive program semantics via graph neural networks. In: Proceedings of the 33rd International Conference
on Neural Information Processing Systems, pp 10,197-10,207

ZhuC,DuG, Wu T, Cui N, Chen L, Shi G (2022) Bert-based vulnerability type identification with effective pro-
gram representation. In: Wireless Algorithms, Systems, and Applications: 17th International Conference,
WASA 2022, Dalian, China, November 24-26, 2022, Proceedings, Part I, Springer, pp 271-282

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Michael Fu is a PhD student in the department of software systems and
cybersecurity at Monash University, Australia. His research focuses
on developing deep learning-based automated approaches to (1) locate
vulnerability down to the statement level, (2) identify vulnerability
types, and (3) suggest vulnerability repairs. More about him at https://
michaelful998-create.github.io/.

Dr. Chakkrit (Kla) Tantithamthavorn is a Senior Lecturer and a Direc-
tor of Engagement and Impact at the Faculty of Information Tech-
nology, Monash University, Australia. He is pioneering an emerging
research area of Explainable Al for Software Engineering, inventing
many Al-based technologies to improve developers’ productivity and
make software systems more reliable and more secure while being
explainable to practitioners. He has made several major advances in
explainable Al for software engineering and published the first online
book on Explainable Al for Software Engineering (http://xai4se.
github.io), attracting 13,000+ pageviews from 83 countries worldwide
and receiving positive responses from the SE community. His pub-
lications, books, and tutorials have informed many other studies and
educated the SE community on the importance of explainability and
its applications to software engineering. More about him at http:/
chakkrit.com.

@ Springer

https://www.mend.io/most-secure-programming-languages/
https://www.mend.io/most-secure-programming-languages/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://michaelfu1998-create.github.io/
https://michaelfu1998-create.github.io/
http://xai4se.github.io
http://xai4se.github.io
http://chakkrit.com
http://chakkrit.com

4 Page32o0f33

Empirical Software Engineering (2024) 29:4

@ Springer

Dr. Trung Le is a Lecturer in the Department of Data Science and
Al at Monash University, Australia. He specialises in topics such as
optimal transport theory, machine learning, optimization, probabilis-
tic inference, generative models, transfer learning, continual learning,
adversarial/trustworthy machine learning, and cyber-security. Dr. Le
has published over 100 papers in prestigious conferences and journals
and secured over 1 million dollars in funding for research in areas such
as generative models, adversarial/trustworthy machine learning, trans-
fer learning, and cyber-security.

Yuki Kume is an undergraduate student pursuing Bachelor’s degree in
Computer Science Advanced (Honours) at Monash University, Aus-
tralia. His interests are in software engineering and their application
in enhancing security and privacy. His interest in cybersecurity also
extends to the cryptography and network security domain, including
post-quantum cryptography (PQC) and applied cryptography in net-
worked systems.

Van Nguyen is a Research Fellow at Monash University in Australia,
specifically in the Department of Software Systems & Cybersecurity.
Additionally, he is an Affiliate at CSIRO’s Data61, also located in
Australia. In February 2021, he completed his PhD degree in Com-
puter Science from Monash University. Van Nguyen was acknowl-
edged as a global talent through Australia’s global talent indepen-
dent program (GTI) in 2021. His research focuses on advancing
machine learning and deep learning techniques to address topical
issues in Cybersecurity. His objective is to enhance the design, con-
struction, and protection of security systems, ultimately mitigating
security breaches. Van Nguyen also demonstrates interest in the fields
of computer vision and natural language processing. His contributions
to these areas have resulted in the publication of over 16 papers in
esteemed conferences and journals that specialise in machine learning
and software engineering.

Empirical Software Engineering (2024) 29:4 Page 33 of 33 4

Dinh Phung is a Professor in the Department of Data Science and Al,
Monash University, Australia. He received his B.Sc (first-class hon-
our) and PhD degrees in computer science from Curtin University in
2001 and 2005 respectively. He is best known for his contributions in
optimal transport theory for machine learning, Bayesian nonparamet-
ric models, deep generative models and trustworthy Al. He has won
numerous research awards, published 250+ papers and attracted over
15 million fundings in these areas and application domains such as
NLP. computer vision, cybersecurity, digital health, and Al-enabled
autism research. He has been actively serving the academic commu-
nity, including TPC members for 50+ top-ranked conferences in Al
and machine learning, being associate editor for the Journal of Arti-
ficial Intelligence Research since 2021 and was the Finalist for the
prestigious Australian Museum Eureka Prize for Excellence in Data
Science in 2020.

John Grundy is Australian Laureate Fellow and Professor of Software
Engineering at Monash University. His interests include automated
software engineering, software engineering methods and tools, human
aspects and their impact on software engineering, requirements engi-
neering and software engineering education. He is Fellow of Auto-
mated Software Engineering and Fellow of Engineers Australia.

Authors and Affiliations

Michael Fu' - Chakkrit Tantithamthavorn'® - Trung Le' - Yuki Kume' -
Van Nguyen' . Dinh Phung' - John Grundy’

Michael Fu
yeh.fu@monash.edu

Trung Le
trunglm @monash.edu

Yuki Kume
yuki.kume @monash.edu

Van Nguyen
Van.Nguyenl @monash.edu

Dinh Phung
Dinh.Phung @monash.edu

John Grundy
John.Grundy @monash.edu

Monash University, Clayton, VIC, Australia

@ Springer

http://orcid.org/0000-0002-5516-9984

	AIBugHunter: A Practical tool for predicting, classifying and repairing software vulnerabilities
	Abstract
	1 Introduction
	2 AIBugHunter: Our Approach
	2.1 AIBugHunter Security Tool
	2.2 Example Usage
	2.3 AIBugHunter Implementation
	2.3.1 Front-End Implementation
	2.3.2 Back-End Implementation

	3 Learning to Predict Vulnerability Type and Severity
	3.1 Multi-Objective CWE Classification
	3.1.1 Sequence Representation
	3.1.2 Two Non-Shared Classification Heads
	3.1.3 Multi-Objective Optimization

	3.2 CVSS Severity Score Estimation

	4 A Quantitative Evaluation of AIBugHunter
	4.1 Research Questions
	4.2 Studied Dataset
	4.3 Experimental Setup
	4.4 Experimental Results
	RQ1: How accurate is our approach for predicting vulnerability IDs (i.e., CWE-IDs)?
	RQ2: How accurate is our approach for predicting vulnerability types (i.e., CWE abstract types)?
	RQ3: How accurate is our approach for predicting vulnerability severity?

	5 Qualitative Evaluations of AIBugHunter
	5.1 A Qualitative Survey Study
	5.1.1 Survey Design
	5.1.2 Survey Results

	5.2 A Preliminary User Study
	5.2.1 User Study Design
	5.2.2 User Study Results

	5.3 The implications of AIBugHunter to researchers and practitioners

	6 Threats to Validity
	6.1 Construct Validity
	6.2 Internal Validity
	6.3 External Validity

	7 Related Work
	7.1 ML-Based Vulnerability Type Classification
	7.2 Multi-Task Learning for Software Vulnerability Prediction
	7.3 Explainable AI for Cybersecurity

	8 Conclusions
	Acknowledgements
	References

