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DevOps has emerged as one of the most rapidly evolving software development paradigms. With the growing
concerns surrounding security in software systems, the DevSecOps paradigm has gained prominence, urging
practitioners to incorporate security practices seamlessly into the DevOps workflow. However, integrating
security into the DevOps workflow can impact agility and impede delivery speed. Recently, the advancement
of artificial intelligence (AI) has revolutionized automation in various software domains, including software
security. AI-driven security approaches, particularly those leveraging machine learning or deep learning,
hold promise in automating security workflows. They reduce manual efforts, which can be integrated into
DevOps to ensure uninterrupted delivery speed and align with the DevSecOps paradigm simultaneously. This
paper seeks to contribute to the critical intersection of AI and DevSecOps by presenting a comprehensive
landscape of AI-driven security techniques applicable to DevOps and identifying avenues for enhancing
security, trust, and efficiency in software development processes. We analyzed 99 research papers spanning
from 2017 to 2023. Specifically, we address two key research questions (RQs). In RQ1, we identified 12 security
tasks associated with the DevOps process and reviewed existing AI-driven security approaches. In RQ2, we
discovered 15 challenges encountered by existing AI-driven security approaches and derived future research
opportunities. Drawing insights from our findings, we discussed the state-of-the-art AI-driven security
approaches, highlighted challenges in existing research, and proposed avenues for future opportunities.
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privacy→ Software security engineering; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
The traditional software development lifecycle (SDLC) adopts a sequential and siloed approach,
with distinct phases executed in a linear fashion, resulting in limited collaboration, slow feedback
loops, increased risk of defects, difficulty in managing changes, lack of agility, and increased costs
and time-to-market. To address these limitations, DevOps emerged over a decade ago, combining
development (Dev) and operations (Ops) to integrate individuals, processes, and technology across
application planning, development, delivery, and operations. Moreover, DevOps facilitates coordi-
nation and collaboration among previously segregated roles like development, quality engineering,
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and security [127]. DevOps has been a widely adopted SDLC [117], with organizations generally
expressing satisfaction and positivity regarding their transition to DevOps practices [49].

While DevOps improves collaboration, automation, and agility in software development and oper-
ations, it often overlooks security considerations until later stages of the development process [131].
This delayed focus on security can lead to vulnerabilities and risks being introduced into the soft-
ware, potentially exposing organizations to cyber threats and compliance issues. To overcome these
security limitations and ensure the secure delivery of software products while preserving DevOps
agility, the concept of DevSecOps (Development, Security, and Operations) emerged. DevSecOps
involves considering application and infrastructure security from the outset and automating certain
security gates to prevent slowdowns in the DevOps workflow [222]. Incorporating security practices
into DevOps to achieve DevSecOps poses several challenges. However, common security practices,
such as security code review [80], often demand significant manual effort, potentially hindering the
agility of DevOps. A recent study underscores the need for developer-centric application security
testing tools tailored to the continuous practices within DevSecOps. Moreover, it advocates for
further research into automating traditionally manual security practices to align with the rapid
software deployment cycles [153].

In recent years, the rapid advancement of artificial intelligence (AI) technologies has transformed
various domains, including software development and cybersecurity. As organizations increasingly
adopt DevSecOps practices [65], integrating security into the software development lifecycle
becomes paramount. Furthermore, AI-based security approaches are trending in research, and
security awareness in the software industry is increasing. As highlighted in Google’s 2023 State of
DevOps Report, DevOps teams believe that AI will play a crucial role in data analysis, security tasks,
and bug identification [62]. Notably, the Executive Order on the Safe, Secure, and Trustworthy
Development and Use of Artificial Intelligence, issued by the White House [78], underscores the
importance of safety, responsible innovation, equity, transparency, and international collaboration
in AI development and deployment. In summary, there has been a growing focus on the trend
of DevSecOps in software development, along with an increased emphasis on utilizing AI for
enhancing security measures.
We observe that several systematic literature reviews (SLRs) have explored the DevSecOps

domain from diverse perspectives. As presented in Table 1, one SLR focused on AI-driven approaches
(i.e., machine learning and deep learning) specifically for the operation and monitoring step in
DevSecOps [9], while other studies, not primarily focused on AI, covered all steps of DevSecOps
[4, 100, 118, 131, 132, 145, 153, 187]. However, none of the previous studies reviewed AI-driven
approaches for all steps in DevSecOps comprehensively. Despite the growing intersection of AI
and DevSecOps, our analysis reveals a notable absence of an SLR specifically examining literature
concerning AI-driven methodologies and tools aimed at automating and enhancing the security
aspect of DevOps that helps achieve the DevSecOps paradigm. To bridge this gap, our research aims
to contribute to this critical intersection by providing a comprehensive landscape of AI techniques
applicable to DevSecOps and identifying future opportunities for enhancing security, trust, and
efficiency in software development processes.
In this article, we define AI approaches as those employing machine learning or deep learning

algorithms. We iteratively defined our search string and searched papers from top-tier software
engineering and security conferences and journals, focusing on those published between 2017 and
2023. This timeframe was chosen due to the significant advancements in AI and Large Language
Models (LLMs) since the proposal of the transformer architecture in 2017. Our automated literature-
searching process yielded a collection of 1,683 papers, from which we manually reviewed and
filtered out 1,595 papers based on our selection criteria. Moreover, our snowballing search identified
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11 additional papers. We systematically analyzed the collected 99 papers and presented two key
aspects: Firstly, we identified existing AI-based security methods that can be integrated into the
DevOps workflow. Secondly, we delved into the challenges and future research opportunities arising
from the current landscape of AI-based security methods. Based on our SLR, this article presents
the following contributions:

• Wepresented the landscape of the existing AI-based security approaches that can be integrated
into DevOps workflow to fulfil the DevSecOps paradigm.

• We identified the themes of challenges faced by state-of-the-art AI-based security approaches
and derive future research opportunities.

2 BACKGROUND AND RELATEDWORK
In this section, we define the DevOps process of this study and present an overview of each step in
DevOps. We then compare our study with existing reviews on DevSecOps.
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Fig. 1. The overview of the DevOps workflow and the identified security tasks relevant under each step in
the DevOps process.

2.1 DevOps
For consistency, we followed the definition provided by Microsoft [125] and determined DevOps as
a five-step workflow (depicted in Figure 1): (1) Plan, (2) Development, (3) Code Commit, (4) Build,
Test and Deployment, and (5) Operation and Monitoring. Below, we introduce each step in detail.

Plan. In the “Plan” step of DevOps, teams define project goals, requirements, and timelines.
This phase establishes the initial roadmap for the project, involving activities such as gathering
user stories, prioritizing features, and assigning tasks. During this phase, the team identifies project
objectives and security needs, engaging in threat modeling to grasp security vulnerabilities and
plan security measures accordingly [166]. Furthermore, software impact analysis is conducted
to identify entities directly or indirectly influenced by a change [8]. This involves the process of
assessing and estimating the potential consequences before implementing a modification in the
deployed product [93].

Development. In the “Development” step of DevOps, software engineers are responsible for
implementing the features and functionalities outlined in the requirements and specifications estab-
lished during the planning phase. In this step, developers operate within an Integrated Development
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Environment (IDE) where they use static analysis tools (e.g., Checkmarx [22], Flawfinder [200],
and Snyk [170]) to scan for potential errors and vulnerabilities before compiling the code.

Code Commit. In the “Code Commit” step of DevOps, developers use version control systems
like Git to commit their code changes, facilitating collaboration and tracking changes. This step
is integral to the Continuous Integration/Continuous Deployment (CI/CD) pipeline, where CI
involves the regular integration of developers’ work into the main branch of the version control
system [173], while CD automates the deployment of software changes to production without
human intervention [164]. Furthermore, dependency management plays a critical role in this step,
as modern software often relies heavily on third-party code, such as external libraries, to streamline
development processes [101]. However, this practice can introduce dependency vulnerabilities
[144], underscoring the importance of effectively managing external libraries and dependencies
to ensure the reliability and security of the software product. For instance, Dependabot [61] in
GitHub helps users monitor their software dependencies and issues security alerts to users if finding
vulnerable dependencies.

Build, Test, and Deployment. In the “Build and Test” step of DevOps, software code under-
goes compilation and rigorous testing to ensure functionality and reliability. Depending on the
organization’s infrastructure and DevOps practices, these processes may occur either on-premises
or in the cloud. In software systems, various configurations are used to control features, endpoints
(e.g., cache server addresses), security, fault tolerance, tunable behaviors (e.g., timeouts, throttling
limits) and so on [83]. Thus, configuration validation tools are used to ensure the proper configu-
ration of cloud environments. Infrastructure as Code (IaC) simplifies infrastructure management
by provisioning consistent environments through machine-readable code, eliminating the need
for manual provisioning and management of servers and other components during application
development and deployment [154]. Various tools and platforms support IaC, including Terraform,
Cloudify, Docker Swarm, Kubernetes, Packer, and Chef, Ansible, Puppet for configuration manage-
ment [66]. Then, the validated software code is deployed to the production environment to make it
available for end-users, involving customization, configuration, and installation [20]. This phase
involves automating the deployment process to ensure consistency and reliability [84].

Operation and Monitoring. In the “Operation and Monitoring” step of DevOps, the focus
shifts to maintaining and monitoring the deployed software to ensure optimal performance and
security. This phase involves leveraging actionable intelligence and employing data-driven, event-
driven processes to promptly identify, evaluate, and respond to potential risks [125]. Log analysis is
commonly used to detect and diagnose abnormal behavior, enhancing system reliability using data
from application logs and runtime environments [18]. Additionally, anomaly detection involves
identifying uncommon and unexpected occurrences over time [14]. Hagemann and Katsarou [68]
categorize methods for detecting anomalies into three groups: machine learning, deep learning,
and statistical approaches. Finally, feedback loops are established to gather insights from the
aforementioned monitoring activities, enabling continuous improvement and refinement of the
DevOps pipeline and security measures.

2.2 Other Reviews in DevSecOps
We are aware that there are existing literature reviews of the DevSecOps process, and we have
identified 9 related reviews, which are summarized in Table 1. Myrbakken and Colomo-Palacios
[131] conducted one of the early literature reviews of DevSecOps, focusing on providing an overview
and defining the DevSecOps process, considering DevSecOps as a relatively new concept at the
time. Prates et al. [145] reviewed DevSecOps metrics that can be used to monitor the process. For

, Vol. 1, No. 1, Article . Publication date: April 2024.



AI for DevSecOps: A Landscape and Future Opportunities 5

Table 1. Comparison with other related reviews focusing on DevSecOps. #P - total number of reviewed
papers, SLR - Is the study a systematic literature review?, A - Does the study focus on the machine learning
and deep learning approaches for DevSecOps?, B - Does the study encompass all steps in DevSecOps?

Reference Year Focus Time #P SLR A B

Myrbakken and Colomo-Palacios [131] 2017 This study explores the definition, characteristics, benefits, and evolution of DevSecOps 2014-2017 52 Vwhile also pointing out the challenges in its adoption.
Prates et al. [145] 2019 This study reviews important metrics for monitoring the DevSecOps process. 2013-2019 13

Mao et al. [118] 2020 This study reports the state-of-the-practice of DevSecOps and calls for academia 2013-2019 141 Vto pay more attention to DevSecOps.
Bahaa et al. [9] 2021 This study reviews machine learning approaches on the detection of IoT attacks. 2016-2020 49 V V
Leppänen et al. [100] 2022 This study reviews security challenges and practices for DevOps software development. 2015-2019 18 V V

Akbar et al. [4] 2022 This study identifies and prioritizes the challenges associated with implementing -2022 46 Vthe DevSecOps process.

Naidoo and Möller [132] 2022 This study presents a socio-technical framework of DevSecOps based on 2016-2020 26 V Va systematic literature review.

Rajapakse et al. [153] 2022 This study reviews the challenges faced by practitioners in DevSecOps adoption, 2011-2020 54 V Vassesses solutions in the literature, and highlights areas requiring future research.

Valdés-Rodríguez et al. [187] 2023 The study reviews methods or models suitable for integrating security into the 2018-2023 39 V Vagile software development life cycle.

This study 2024
Our study introduces a landscape of state-of-the-art AI-driven security methodologies

2017-2023 99 V V Vand tools tailored for DevSecOps, while also pinpointing the challenges faced
by these AI-driven approaches and deriving potential avenues for future research.

example, defect density and defect burn rate [29] can be employed in the “Development” step to
monitor the quality of code being produced and the efficiency of defect resolution over time.

Recent studies have identified several challenges when implementing the DevSecOps paradigm [4,
100]. For instance, Akbar et al. [4] pointed out challenges such as the use of immature automated
deployment tools and a lack of software security awareness. Furthermore, Rajapakse et al. [153]
organized challenges and solutions in their SLR based on existing literature, presenting future
research opportunities in DevSecOps for unresolved problems. Additionally, Valdés-Rodríguez et al.
[187] discussed current trends in existing methods for software development involving security.
On the other hand, Bahaa et al. [9] concentrated on machine learning/deep learning approaches
for Internet of Things (IoT) attacks, while Naidoo and Möller [132] delved into the socio-technical
perspective of DevSecOps.

In contrast to previous reviews, our SLR is driven by the emerging trend of AI in security research.
AI-driven security approaches offer the potential to automate time-consuming security processes,
thereby alleviating the time barrier associated with integrating security into DevOps. Our objective
is to categorize AI-driven security approaches, pinpoint existing challenges, and uncover future
research prospects for AI-based methods in DevSecOps. To our knowledge, this paper represents
one of the first SLRs focusing on AI-driven security approaches, encompassing every step of the
DevSecOps process.

3 APPROACH
This systematic literature review (SLR) follows the principles outlined by Kitchenham Keele et al.
[90], Kitchenham et al. [94], a framework widely adopted in the context of DevSecOps-related SLRs
[4, 149, 153, 160]. Our methodology encompasses three stages: (1) formulation of the review plan,
(2) execution of the review, and (3) comprehensive examination of the review outcomes. In the
following sections, we introduce each of these steps in detail.

3.1 ResearchQuestions
For a thorough understanding of AI-driven security approaches in DevSecOps, it is crucial to explore
the existing AI techniques applicable to each DevSecOps step. Additionally, identifying challenges
within these AI-based security techniques is essential for deriving future research directions aimed
at further enhancing these techniques. Thus, this systematic literature review aims to address the
following research questions:
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Table 2. The overview of the selected software engineering and security conferences and journals.

Software Engineering Conference Acronym CORE Rank #P
International Conference on Software Engineering ICSE A* 12

Foundations of Software Engineering FSE A* 12
Automated Software Engineering Conference ASE A* 14

Mining Software Repositories MSR A 5
Software Analysis, Evolution and Reengineering SANER A 5

International Symposium on Software Testing and Analysis ISSTA A 1
International Conference on Software Maintenance and Evolution ICSME A 1

Evaluation and Assessment in Software Engineering EASE A 0
Empirical Software Engineering and Measurement ESEM A 1

Software Engineering Journal Acronym Impact Factor #P
Transactions on Software Engineering TSE 7.4 11

Transactions on Software Engineering and Methodology TOSEM 4.4 4
Information and Software Technology IST 3.9 5

Empirical Software Engineering EMSE 3.8 5
Journal of Systems and Software JSS 3.5 5

Security Conference Acronym CORE Rank #P
Network and Distributed System Security Symposium NDSS A* 2

Symposium on Security and Privacy SP A* 1
Computer and Communications Security CCS A* 5

USENIX Security Symposium USENIX A* 0
Security Journal Acronym Impact Factor #P

Transactions on Dependable and Secure Computing TDSC 7.3 8
Transactions on Information Forensics and Security TIFS 7.2 2

• RQ1: What are the existing AI methods and tools employed at each stage of the
DevSecOps process, and what specific security challenges do they address?

• RQ2: What challenges and future research opportunities exist for AI-driven DevSec-
Ops?

3.2 Literature Search Strategy
We follow the iterative approach outlined by Kitchenham et al. [94] to develop the search string
for this study. For each of the five steps in DevOps, as defined in Section 2.1, we first identify the
common security processes associated with that step. Next, we combine these security processes
with AI-related terms to form the search string for AI-driven security approaches for that step. In
particular, the full list of security tasks at each step of DevOps, which this study concentrates on, is
presented in Figure 1. For instance, in the planning step, common security processes include threat
modeling and software impact analysis. We extract the keywords “threat modeling” and “software
impact analysis” with AI-related terms, resulting in a search string such as (threat modeling OR
software impact analysis) AND (AI-related terms). This iterative process is repeated for each step in
the DevOps lifecycle. This process will result in a set of DevSecOps activity keywords and a set of
AI-related keywords. The complete set of search keywords is as follows:

• Keywords related to DevSecOps activities: Threat Modeling, Software Impact Analysis, Static
Application Security Testing, SAST, Software Vulnerability Detection, Software Vulnerability
Prediction, Software Vulnerability Classification, Automated Vulnerability Repair, Automated
Program Repair, Dependency Management, Dependency Vulnerability, Package Management,
CI/CD Secure Pipeline, Software Defect Prediction, Defect Prediction, SDP, Continuous Integration,
Continuous Deployment, Configuration Validation, Infrastructure Scanning, Infrastructure as
Code, IaC, Log Analysis, Anomaly Detection, Cyber-Physical Systems
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• Keywords related to AI: Artificial Intelligence, AI, Deep Learning, DL, Machine Learning, ML,
LLM, Large Language Model, Language Model, LM, Natural Language Processing, NLP, Trans-
former, Supervised Learning, Semi-supervised Learning, Unsupervised Learning

After an iterative refinement process, our final search string is as follows:

“
(
[ThreatModeling] OR [Software Impact Analysis] OR [Static Application Security Testing]

OR [SAST] OR [Software Vulnerability Detection] OR [Software Vulnerability Prediction]
OR [Software Vulnerability Classification] OR [Automated Vulnerability Repair] OR [Auto-
mated Program Repair] OR [Dependency Management] OR [Dependency Vulnerability] OR
[Package Management] OR [CI/CD Secure Pipeline] OR [Software Defect Prediction] OR
[Defect Prediction] OR [SDP] OR [Continuous Integration] OR [Continuous Deployment]
OR [Configuration Validation] OR [Infrastructure Scanning] OR [Infrastructure as Code]
OR [IaC] OR [Log Analysis] OR [Anomaly Detection] OR [Cyber-Physical Systems]

)
AND(

[Artificial Intelligence] OR [AI] OR [Deep Learning] OR [DL] OR [Machine Learning]
OR [ML] OR [LLM] OR [Large Language Model] OR [Language Model] OR [LM] OR [Nat-
ural Language Processing] OR [NLP] OR [Transformer] OR [Supervised Learning] OR
[Semi-supervised Learning] OR [Unsupervised Learning]

)
”

We use Harzing’s Publish or Perish software for our automated search process [75] with the
Google Scholar search engine, aiming to gather high-quality and impactful research papers for our
review. To achieve this, we target both top-tier software engineering (SE) conferences/journals and
reputable software security venues. The targeted venues are summarized in Table 2. Specifically,
we focus on 9 SE conferences, all of which are ranked either CORE A* or CORE A according to
International CORE Conference Rankings (ICORE) [31], along with 5 SE journals with impact
factors (IFs) ranging from 3.5 to 7.4. Additionally, we include 4 security conferences ranked CORE
A* and 2 security journals with IFs of 7.2 and 7.3. We incorporate SE and security journals with IFs
spanning from 3.5 to 7.4 to strike a balance between diversity and reputation. While journals with
a higher IF enhance visibility and credibility, those with a lower IF broaden our literature search.
It is worth noting that we deliberately chose the top-tier SE and security conferences and

journals to ensure the quality and impact of the studies included in our review. Our comprehensive
search process led to a collection of 1,683 unique papers across 20 distinguished venues, ultimately
identifying 88 studies that met our rigorous criteria and were deemed suitable for inclusion. This
substantial number of papers demonstrates the thoroughness of our review and compares favorably
with similar SLRs outlined in Table 1. While we acknowledge the potential for overlooking relevant
studies by excluding lower-ranking venues, our deliberate emphasis on esteemed SE and security
venues enables us to capture emerging trends and valuable insights from reputable sources. Notably,
this approach aligns with the strategies adopted by other SLRs in the software engineering field
such as [198].

This paper reviews AI-based security approaches that can be integrated into the DevOps process
to achieve the DevSecOps paradigm. It is worth noting that the recent advancements of AI such as
language models (LM) and large language models (LLM) stem from the transformer architecture
published in 2017 by Vaswani et al. [189]. Thus, we focus our search on papers published from 2017
until the end of 2023 to examine the state-of-the-art AI-based security methods.

3.3 Literature Selection: Inclusion-Exclusion Criteria andQuality Assessment Criteria
As presented in Table 3, we have formulated three inclusion criteria (IC) and five exclusion criteria
(EC) to ensure that the papers selected are qualified and highly relevant to this study. In addition, a
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Fig. 2. The overview of our study identification and selection process.

Table 3. The inclusion-exclusion criteria and quality assessment criteria.

Inclusion Criteria
IC-1 The paper must be peer-reviewed and published at a journal, conference, or workshop
IC-2 The paper focuses on machine learning/deep learning for security purposes for any of the step

included in DevOps
IC-3 The paper with accessible full text

Exclusion Criteria
EC-1 The paper is a duplicate or continuation of another study already included in the review
EC-2 The paper written in languages other than English
EC-3 The paper is a literature review
EC-4 The paper is a replication study
EC-5 Studies from sources such as books, theses, technical reports, monographs, keynotes, panels,

or venues that do not undergo a full peer-review process
Quality Assessment Criteria

QAC-1 The paper presents empirical results or case studies demonstrating the effectiveness of
machine learning/deep learning techniques in improving security practices within DevSecOps

QAC-2 The research objective is described
QAC-3 The paper describes techniques or methodologies
QAC-4 The paper describes evaluation or validation methods
QAC-5 The paper presents the study results

well-crafted quality assessment can help prevent biases introduced by low-quality studies [217]
and Kitchenham et al. [94] also suggested that such a process should be considered mandatory
in any systematic review to avoid research bias. Thus, in Table 3, we further outline five quality
assessment criteria (QAC) aimed at assessing the relevance, clarity, validity, and significance of
included papers.

Specifically, we employ a binary scale (Yes/No) to evaluate each IC, EC, and QAC for every paper.
Papers failing to meet any criteria are excluded from our study. We initially review the title and
abstract of each of the 1,683 papers exported from our automated search process after deduplication.
However, in some cases, we need to assess the full text to make a decision. Despite the presence of
our search string terms in the title, abstract, or keywords of certain papers, it remains unclear how
their content relates to the focus of our SLR. For example, while some papers appear to develop
an automated security approach for a specific step in DevOps based on their title and abstract, a
full-paper inspection reveals that the proposed approach is not relevant to either machine learning
(ML) or deep learning (DL). Thus, to ensure that a paper is adequately aligned with the focus of our
review (i.e., ML or DL-based security approaches for DevSecOps), we conducted a comprehensive
full-text review following the initial assessment of titles and abstracts. By adhering to these steps,
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we can effectively filter out papers that do not address ML and DL for DevSecOps. Specifically,
we excluded 1,584 irrelevant papers based on our IC, EC, and QAC, resulting in a collection of 99
papers selected for this study.

3.4 Snowballing Search
To expand our search for potentially relevant primary studies, we employed a snowballing approach.
This method involves not only examining the reference lists and citations of papers but also
systematically tracking where papers are referenced and cited. This dual approach, known as
backward and forward snowballing, allows us to thoroughly explore relevant literature beyond the
initial set of papers.

Before initiating the snowballing procedure, it is essential to curate a collection of initial papers.
In this study, the initial paper collection includes 99 papers after the quality assessment. We
performed forward and backward snowballing with deduplication and the full study selection
process. Consequently, we obtained an additional 11 papers via our snowballing search.

Fig. 3. The overview of the distributions of the selected 99 papers.

3.5 Data Extraction and Analysis
We obtained 99 relevant papers after searching, filtering, and snowballing. Figure 3 presents an
overview of the distribution of our selected papers. All of the selected papers are peer-reviewed
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by the venues listed in Table 2. Figure 3 (a) illustrates the distribution of papers across various
venues, revealing ASE as the most prevalent venue with a contribution of 14% of the total, followed
closely by ICSE and FSE, each accounting for 12%. TDSC follows with 8%, while IST, JSS, EMSE,
MSR, SANER, and CCS each contribute 5% respectively. TOSEM contributes 4%, whereas NDSS
and SP have the smallest contributions, at 2% and 1% respectively.

In Figure 3 (b), we present the paper trend over the years. Notably, the number of papers annually
shows a steady linear increase from 2017 to 2022. However, there is a significant jump from 14 papers
in 2022 to 39 papers in 2023. This sudden surge could be attributed to the recent advancements in
generative AI and the escalating concerns surrounding software security. Figure 3 (c) presents the
paper distributions of SE venues versus security venues where SE venues account for the majority
of 82% of papers while security venues account for the remaining 18%.

Figure 3 (d) illustrates the distribution of papers across each step in DevOps. Notably, we found
no relevant papers discussing an AI-driven security approach in the planning step of DevOps.
This could be attributed to the nature of activities involved in this stage, such as threat modeling
and impact analysis, which may require a higher degree of expertise and human intervention
rather than relying on AI algorithms. The majority of studies, accounting for 52%, focus on the
Development step in DevOps. In this step, AI-driven security approaches can directly assist software
developers by detecting vulnerabilities in their source code, providing explanations, and suggesting
repairs. Following this, 24% of the studies concentrate on the Operation and Monitoring step in
DevOps. During this phase, AI-driven security approaches can learn from historical data and help
monitor and detect anomalies occurring in software systems. Additionally, 17% of studies focus
on developing AI-driven approaches for securing the Code Commit step in DevOps, while the
remaining 7% concentrate on the Build, Test, and Deployment step in DevOps.
During the full-text review, we conducted data extraction to gather all relevant information

necessary for a comprehensive and insightful response to our two research questions outlined
in Section 3.1. This extraction phase involved collecting data on various AI-driven approaches
proposed for security tasks associated with each step in DevOps, as outlined in Figure 1. With this
compiled data, we systematically analyzed the relevant aspects of AI-driven approaches aimed at
enhancing the security aspect of DevOps.

4 RQ1: AI METHODS OVERVIEW FOR DEVSECOPS
In this section, we introduce AI-driven security methodologies and tools for DevSecOps. We
derived insights from 99 collected literature sources to address our RQ1. Each subsection focuses on
AI-driven approaches for specific steps in DevOps. These steps may encompass multiple security-
related tasks. Our answers to RQ1 are summarized in Table 4.

4.1 Plan
4.1.1 Threat Modeling. Threat modeling is an engineering technique employed to identify threats,
attacks, vulnerabilities, and countermeasures that may impact an application. It aids in shaping
the application’s design, meeting the organization’s security objectives, and minimizing risk [129].
In the planning step of DevSecOps, threat modeling proactively identifies security concerns and
integrates security measures into the development process from the outset. Although attempts
have been made to explore AI-driven approaches for threat modeling in the DevSecOps context, no
relevant literature was found. Thus, in Section 6.1.1, we will introduce current threat modeling
approaches such as STRIDE and DREAD and discuss their relevance to DevSecOps planning.

4.1.2 Software Impact Analysis. Impact analysis, also known as change analysis, is integral to the
planning step of DevSecOps, allowing teams to assess the potential effects of proposed changes on
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Table 4. (RQ1) The landscape of AI-driven approaches for security-related tasks in DevOps.

DevOps Step Identified Security Task AI Method ML DL Reference
Plan Threat Modeling - - - -

Software Impact Analysis - - - -
Development Software Vulnerability Detection RNN V [37, 108, 109, 159, 197]

TextCNN V [17]
GNN V [19, 21, 42, 76, 107, 130, 192, 202, 223, 231, 235]

Node2Vec V [220]
LM for code V [40, 56, 225]
LM + GNN V [40, 174]

Software Vulnerability Classification ML algorithms V [6, 194]
RNN V [109, 236]

TextRCNN V [41]
Transformer V [191]

LM V [38, 105]
LM for code V [54, 57]

LM for code + RNN V [137]
Automated Vulnerability Repair ML algorithms V [169]

CNN V [115]
RNN V [25, 133]

Tree-based RNN V [106]
GNN V [39]

Transformer V [24, 28, 232, 233]
LM for code V [13, 53, 58, 73, 86, 88, 120, 134, 140, 226, 234]

Security Tools in IDEs LM-based security tool V [57]
Code Commit CI/CD Secure Pipelines ML algorithms V [16, 23, 103, 138, 142, 177, 178, 183, 214]

Explainable ML V [141]
RNN V [143, 158]

Tree-based RNN V [36]
Transformer V [146]
JIT-SDP tool V [91, 147]

Change analysis tool V [121]
LM V [96]

LM for code V [224]
Build, Test, and Deployment Configuration Validation ML algorithms V [26, 74, 207]

FFNN V [67]
GAN V [10, 168]

Infrastructure Scanning ML algorithms V [35, 151, 152]
Word2Vec-CBOW V [15]

Operation and Monitoring Log Analysis and Anomaly Detection ML algorithms V [30, 72, 92, 161, 204, 215]
RNN V [44, 45, 104, 122, 176, 193, 204, 227, 230]

RNN-based AE V [44, 221]
GNN V [102]

Transformer V [97]
Explainable DL V [3, 71]
Diffusion Model V [99]

Cyber-Physical Systems ML algorithms V [110, 205]
RNN + GNN [210]

GAN V [209]
VAE V [208]

Transformer V [81]
LM + RNN V [211]

Abbreviations: RNN - Recurrent Neural Network; TextCNN - Text Convolutional Neural Network; GNN - Graph Neural Network; LM - Language Model;
ML - Machine Learning; TextRCNN - Text Recurrent Convolutional Neural Network; JIT-SDP - Just-in-Time Software Defect Prediction;
FFNN - Feedforward Neural Network; GAN - Generative Adversarial Network; CBOW - Continuous Bag-of-Words; AE - Autoencoder;
VAE - Variational Autoencoder; DL - Deep Learning.

software systems before implementation. This process involves identifying and evaluating ripple
effects across various system components, including code, configuration, and dependencies [89].
Early impact analysis enables teams to anticipate and mitigate risks such as disruptions to system
functionality, security vulnerabilities, and performance issues. Despite the critical role of impact
analysis, no relevant literature on AI-driven security approaches was found during our literature
search. Thus, in Section 6.1.2, we will introduce current impact analysis approaches and discuss
their relevance to DevSecOps planning.
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4.2 Development
4.2.1 Software Vulnerability Detection. Machine learning and deep learning-based vulnerability
detection (VD) have been proposed to predict potential vulnerabilities in developers’ source code.
These detection approaches achieve improved accuracy from traditional static analysis methods
without requiring the compilation of developers’ code [33]. By leveraging these VD methods during
development, developers can proactively identify vulnerabilities, facilitating a “shift-left” in security
testing—from the testing/deployment phase to the development phase. This proactive integration
aligns with the principles of DevSecOps, embodying the paradigm during the “Development” step.
In what follows, we present current AI-driven VD methods, explore the challenges they have faced,
and highlight potential avenues for future research.

Existing AI methods. Various AI-driven vulnerability detection (VD) methods have been pro-
posed to predict vulnerabilities on different granularities (e.g., file, function, and line levels). Du et al.
[46] used program metrics to detect vulnerabilities and compared their approach with machine
learning models on the file level; Dam et al. [37] leveraged long short-term memory (LSTM) recur-
rent neural networks to learn both semantic and syntactic features of code and predict vulnerabilities
at the file level.

On the other hand, most of the recent works focused on function-level vulnerability predictions.
For instance, Russell et al. [159] developed an RNN-based representation learning approach that
treated a code function as a sequence of tokens and input to sequential neural networks.
Other mainstream considered graph structures of source code such as data flow graph (DFG),

control flow graph (CFG), or abstract syntax tree (AST). They treated a code function as a graph
with nodes and edges and used graph neural networks (GNNs) to learn the graph representation to
make vulnerability predictions. In particular, Zhou et al. [231] and Cao et al. [19] both proposed
to incorporate DFG, CFG, and AST into GNNs while Chakraborty et al. [21] leveraged the code
property graph (CPG) [213]. Mirsky et al. [130] proposed an enriched program dependency graph
(ePDG) as the representation of their program and applied gated graph recurrent neural networks
(GRNN). In addition, Zhang et al. [223] focused on the cross-project VD and built graph attention
networks while Yuan et al. [220] proposed to extract the function’s abstract behaviors as behavior
graph and embedded such information using Node2Vec [64]. Wang et al. [192] explored the post-
dominate tree and the exception flow graph. Zhang et al. [225] relied on source code pre-trained
language model to embed their syntax-based CFG. Cai et al. [17] based their method on complex
network analysis theory to convert the CPG into an image-like matrix and used the TextCNNmodel.
Moreover, Wu et al. [202] employed vulnerability-specific inter-procedural slicing algorithms to
capture the semantics of various types of vulnerabilities and used GNNs to learn and understand
these vulnerability semantics. Finally, Steenhoek et al. [174] combined the recently advanced large
language models (LLMs) with GNNs to further improve the prediction accuracy.
Nevertheless, these VD methods still operate on the function level, which may still consist of

multiple lines of code that need to be manually inspected by developers. To address this issue,
prior works have proposed various line-level VD approaches. It is worth noting that VulDeePecker,
proposed by Li et al. [109], marks the initial stride towards fine-grained vulnerability detection.
This approach introduces the concept of code gadgets, aiming to encompass a finer-grained code
representation beyond program or function levels. Li et al. [107] proposed to leverage GNNs to
predict on function level and used GNNExplainer [219] to interpret model predictions to locate
fine-grained vulnerabilities. Wartschinski et al. [197] used Word2Vec embedding in conjunction
with an RNN-based model to predict vulnerabilities within a few lines of code. In addition, Zou et al.
[235] proposed a multi-granularity VD that can predict function and slice-level vulnerabilities.
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Recent works have proposed AI-driven methods that can pinpoint vulnerable lines in source code.
Li et al. [108] relied on intermediate code to accommodate extra semantic information with the
BiRNN model to locate vulnerable lines. Fu and Tantithamthavorn [56] leveraged the self-attention
mechanism in the transformer neural networks to locate line-level vulnerabilities while Hin et al.
[76] leveraged GNNs and treat line-level VD as a node classification task. Similarly, Dong et al. [42]
used GNNs with their subgraph embedding. Additionally, Ding et al. [40] combines the transformer
model with GNNs to locate vulnerabilities on the line level. These line-level VD could save more
manual effort for developers by pinpointing vulnerable lines within a code function.

4.2.2 Software Vulnerability Classification. AI-driven methods hold the promise of predicting
vulnerability types by analyzing the given vulnerable source code. These predictions explain de-
tected vulnerable source code, furnishing developers with valuable insights. By employing this
approach, developers can prioritize addressing critical vulnerability types promptly. In practical
terms, integrating these AI-driven automation methods directly into developers’ Integrated Devel-
opment Environments (IDEs) has the potential to furnish real-time vulnerability insights during
the development stage. This integration aligns with the DevSecOps concept, reflecting the principle
of incorporating security into the “Development” step.

Existing AI methods. We observed that a notable number of studies utilizing AI-driven meth-
ods concentrated on categorizing vulnerability types and characteristics by analyzing the input
from vulnerability descriptions [6, 38, 41, 105, 191]. Nevertheless, these studies fall outside the scope
of our review because information regarding vulnerability descriptions might not be accessible in
the initial phases of software development.

Instead, our focus centers on AI-driven approaches that use plain source code as input to predict
vulnerability types, which can explain vulnerability types by scanning developers’ source code. De-
spite efforts, the data imbalance challenge in vulnerability classification persists. In particular, some
vulnerabilities such as buffer-related errors are common while other vulnerabilities rarely occur.
While Das et al. [38] incorporated data augmentation [199], the performance of their transformer
model showed no significant improvement. Similarly, Wang et al. [194] addressed data imbalance
by focusing on the top 10 frequency CWE-IDs, yet this approach limited the model’s ability to
identify rare vulnerability types.

To mitigate the data imbalance issue, Fu et al. [54] proposed a hierarchical knowledge distillation
framework. The method involves grouping the imbalanced dataset into subsets based on CWE
abstract types, creating more balanced subsets consisting of similar CWE-IDs. Separate TextCNN
teacher models are trained for each subset, but they can only predict specific CWE-IDs within
their subset. To address this limitation, a comprehensive transformer student model predicting all
CWE-IDs is then developed through knowledge distillation.
On the other hand, Fu et al. [57] suggested utilizing the pre-trained language model Code-

BERT [51] in conjunction with multi-objective optimization (MOO) to harness the advantages of
multi-task learning for training a CWE-ID classification model. Their experiments demonstrated
that incorporating multi-task learning, particularly with correlated tasks using the MOO method,
can enhance the performance of vulnerability classification models.
Pan et al. [137] introduced TreeVul, an architecture designed with a hierarchical and chained

structure. This design effectively uses the inherent tree structure of CWE-IDs as prior knowledge
for the classification task. Notably, TreeVul provides developers with predictions for both high and
low-level CWE-IDs. They leveraged CodeBERT to obtain source code representation and relied on
multiple LSTM encoders to generate different levels of predictions.

Different from the approaches mentioned above, Zou et al. [236] combine vulnerability detection
and type classification into an integrated multi-class detection task. Specifically, they proposed
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𝜇VulDeePecker which introduces the concept of code attention and considers control-dependence
when extracting code gadget [109]. The bidirectional LSTM was trained to detect and classify 40
different vulnerability types.

4.2.3 Automated Vulnerability Repair. The progress in sequence-to-sequence (seq2seq) learning
within the realm of deep learning has facilitated significant advancements, particularly in the
development of AI-driven automated programs and vulnerability repair approaches. These in-
novative solutions now offer the capability to automatically recommend fixes for vulnerable or
buggy programs, addressing the time-consuming and labor-intensive nature of manual code repair.
Program repair models take source code as input, which allows for potential integration with
developers’ IDEs, providing near real-time code repair suggestions during the development phase.
This integration automates the vulnerable code repair process and incorporates security into the
“Development” step.

Existing AI methods. Several approaches have been suggested for program repair and vulner-
ability repair based on deep learning (DL), with program repair targeting general software defects
and vulnerability repair addressing security-related weaknesses. Due to the inherent similarities
between these tasks, transfer learning can be employed to enhance the model’s ability to gener-
alize across both as demonstrated by Chen et al. [24]. Consequently, the subsequent discussion
encompasses a review of both DL-based program repair and vulnerability repair.

One of the initial sequence-to-sequence (seq2seq) program repair techniques is SequenceR [25],
employing recurrent neural networks (RNNs) to generate repairs for defective programs. Subse-
quently, prior works [24, 28] proposed to use transformer architecture [189] for vulnerability repair.
This architectural shift enhances repair accuracy by leveraging a global self-attention window,
capturing semantic relationships within a software program more effectively than RNNs.
Recently, considerable research attention has been directed towards employing transformer-

based pre-trained language models (LMs) for both program repair and vulnerability repair [13, 58,
73, 120, 140, 226, 234].

Mashhadi and Hemmati [120] focused on fixing Java programs using CodeBERT [51]. Berabi
et al. [13] used T5 model pre-trained on natural language [148] to perform program repair in
JavaScript while Fu et al. [58] leveraged T5 model pre-trained on code data [196] to repair C/C++
vulnerabilities and evaluated the effectiveness of LMs and different tokenizers. Hao et al. [73] and
Zirak and Hemmati [234] further improved the fine-tuned model using the curricular fine-tuning
strategy and deep domain adaption respectively. In addition, Pearce et al. [140] investigated the
effectiveness of zero-shot large language models for vulnerability repair.
Inspired by vision transformers, Fu et al. [53] introduced a vulnerability masking technique

designed to guide the vulnerability repair model towards focusing on vulnerable code blocks during
the decoding process of corresponding repairs. Another approach, suggested by Zhu et al. [232],
involves a syntax-guided edit decoder for program repair. This method generates edits instead of
modified code, providing an efficient representation of small modifications. Namavar et al. [133] also
studied the effects of different code representations for program repair. Zhu et al. [233] proposed
a type-aware program repair approach to mitigate the limitation of untypable patches generated
by DL models. Dinella et al. [39] represented JavaScript programs as graphs and used GNNs to
produce bug fixes.

Moreover, prior works have introduced context-aware program repair approaches. In particular,
Li et al. [106] proposed to learn the surrounding code contexts of the fixes while Lutellier et al.
[115] presented a context-aware neural machine translation (NMT) architecture that represents the
buggy source code and its surrounding context separately. Jiang et al. [86] developed a code-aware
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search strategy that finds correct fixes by searching for compilable patches that are close in length
to the buggy code.
Certain studies concentrate on addressing particular categories of software bugs. For instance,

Utture and Palsberg [186] focused on fixing resource leak warnings while Marcilio et al. [119]
generated fix suggestions in response to static code analysis warnings, and Siddiq et al. [169]
focused on fixing SQL injection vulnerabilities.
Finally, it is worth noting that some studies have developed end-to-end approaches for both

vulnerability detection and repair [88, 124, 134]. Mesecan et al. [124] presented HyperGI which
can detect, localize, and repair information leakage. Ni et al. [134] used multi-task learning to
construct a comprehensive end-to-end model for both defect prediction and program repair. Jin
et al. [88] relied on a static analysis tool, infer, to detect and locate vulnerabilities, then leveraged
large language models (LLMs) to generate corresponding repairs.

4.2.4 Security Tools in IDEs. Static analysis tools rely on predefined patterns to assist developers in
identifying potential vulnerabilities in source code. Similarly, integrating deep learning (DL)-based
vulnerability prediction approaches into security analysis tools and deploying them to developers’
Integrated Development Environments (IDEs) is becoming increasingly feasible. Previous research
has shown that DL models can surpass static analysis tools in terms of accuracy in detecting and
locating vulnerabilities. Moreover, they exhibit the capability to identify specific vulnerability
types and propose corresponding repairs. The incorporation of AI-driven security tools into IDEs
streamlines developers’ workflows by automating the identification of security issues in their code.
Such automation integrates security considerations into the development stage, aligning with the
principles of DevSecOps. Below, we explore existing AI-driven security tools within IDEs, examine
the challenges they have encountered, and discuss potential avenues for future research.

Existing AI methods. We encountered a limited number of search results while exploring
AI-driven software security tools. Notably, although deep learning-based approaches have demon-
strated superior effectiveness compared to static analysis tools [33], the predominant tools in the
current landscape continue to rely on static analysis and pre-defined patterns. Despite this trend, our
investigation uncovered open-source and commercial AI-driven security tools (AIBugHunter [57]
and Snyk IDE [170]) designed to assist developers in identifying security issues during development.
Fu et al. [57] introduced AIBugHunter, a deep learning-based security tool designed for C/C++

to assist developers in automating security aspects of their development process. This tool boasts
several key capabilities, including the detection and pinpointing of vulnerabilities at the line level,
explanation of detected vulnerability types, estimation of vulnerability severity, and suggestions
for corresponding repairs. Each of these functionalities is powered by a dedicated language model.
AIBugHunter operates as an open-source tool and is accessible as a VSCode extension. According to
the results of a user experiment conducted by Fu et al. [57], AIBugHunter can reduce the time spent
on detecting, locating, estimating, explaining, and repairing vulnerabilities from 10-15 minutes to a
mere 3-4 minutes.
Snyk IDE [170] is a commercial security tool supporting 11 programming languages. Through

static code scans, it provide developers with crucial information, pinpointing vulnerabilities, offering
explanations of their types, and suggesting actionable fixes. Snyk is powered by DeepCode AI,
which consists of multiple AI models trained on security-specific data parsed from millions of
open-source projects by security researchers. Moreover, Snyk IDE provides flexible plans, including
both free and paid options. It seamlessly integrates as a security plugin across various popular IDEs
like JetBrains, Visual Studio Code, Eclipse, and Visual Studio.
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4.3 Code Commit
4.3.1 Dependency Management. Software dependencies play essential roles in software develop-
ment, coming in two types: direct, which are libraries or packages directly called by developers’
code, and transitive, which are dependencies of dependencies. In the DevOps process, developers
can deliver software faster and on shorter release cycles using pre-built software dependencies.
However, they also introduce potential security vulnerabilities, outdated software, bugs, and legal
liabilities, impacting application performance and reliability. Thus, effective dependency man-
agement is critical to minimize these risks and ensure the security and reliability of software
applications [171]. Despite the critical role of effective dependency management, our review of
AI-driven security approaches encountered challenges in finding relevant literature. Thus, in Sec-
tion 6.2.1, we will discuss current dependency management approaches. We will highlight their
relevance to the DevSecOps code commit and discuss their strengths and limitations in addressing
security concerns.

4.3.2 CI/CD Secure Pipelines. In the Code Commit step of DevSecOps, ensuring the security of
the Continuous Integration/Continuous Deployment (CI/CD) pipeline is crucial. A Secure CI/CD
Pipeline involves implementing security measures, starting when code is committed [155]. This
may include integrating security checks, such as Just-in-Time (JIT) defect prediction approaches,
to identify potential vulnerabilities in code changes as soon as they are submitted. Additionally,
establishing robust issue-report-to-fix-commit links enhances security by facilitating the swift
resolution of reported issues, ensuring that security fixes are promptly applied to the codebase.
By leveraging AI-driven techniques in JIT defect prediction and issue-report-to-fix-commit links,
organizations can proactively address security concerns at the code commit stage, aligning with
the principles of DevSecOps.

Existing AI methods. With the increased interest in continuous deployment, a variant of
software defect prediction called Just-in-Time (JIT) Software Defect Prediction (SDP) focuses
on predicting whether each incremental software change (e.g., a commit) is defective [228]. By
analyzing factors such as code complexity and historical data, teams can identify potential issues
before they escalate. Integrating JIT-SDP into the CI/CD pipeline enables teams to proactively
detect security vulnerabilities in code commits, such as improper input validation or insecure
coding practices, allowing for timely mitigation and remediation.
A majority of studies have focused on building ML models for JIT-SDP. For instance, Chen

et al. [23] proposed the supervised method MULTI, which aims to reduce manual effort from
developers by maximizing the number of identified buggy changes while minimizing efforts in
software quality assurance activities. Similarly, Li et al. [103] leveraged semi-supervised learning
with a greedy strategy in unit code inspection effort to rank changes according to their tendency
to be defect-prone.
Addressing challenges such as the class imbalance problem has also been a focus. Cabral et al.

[16] proposed a class imbalance learning algorithm to improve existing ML models for JIT-SDP,
while Tessema and Abebe [183] suggested using change request information to further enhance
ML-based JIT-SDP. Additionally, Pornprasit et al. [141] explored the explainable AI perspective of
defect prediction, using rule-based explanations to explain defective predictions. Specifically, they
leveraged a rule-based logistic regression technique named RuleFit [52] to build a local explainable
model to explain the blackbox ML models.
Fine-grained JIT-SDP models have been proposed to locate buggy files [138] or lines [142, 214]

in a commit by ranking the prediction scores of ML models. On the other hand, Qiu et al. [146]
and Pornprasit and Tantithamthavorn [143] leveraged Recurrent Neural Networks (RNN) to learn
semantic information of source code and locate buggy files in a commit, then localized defective
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lines by ranking prediction scores. In addition, Dam et al. [36] used an abstract syntax tree (AST) to
represent source code and learned tree-based LSTM networks to capture the syntax and multiple
levels of the semantics of source code.

Some prior works have developed JIT-SDP tools for integration into CI/CD pipelines. For example,
Qiu et al. [147] proposed JITO, integrated into Intellij IDEA, to detect defective code changes and
locate exact defect lines. Similarly, Khanan et al. [91] developed JITBot, integrated into CI/CD
pipelines, providing defect prediction in GitHub commits along with explanations to clarify reasons
and mitigation plans. In addition, Mehta et al. [121] introduced Rex, a change analysis tool that
leverages machine learning (ML) models and program analysis. Rex learns change rules that capture
dependencies between different regions of code or configuration, based on patterns observed in
commit logs spanning several months. When an engineer modifies a subset of files within a change
rule, Rex suggests additional changes to ensure consistency and completeness. The tool has been
effectively implemented within services such as Office 365 and Azure, impacting over 5,000 changes
in the system.
On the other hand, issue-report-to-fix-commit links are critical for security, aiding in under-

standing code changes and assessing security implications. In particular, traceability links between
issues and commits (i.e., issue-commit links) play a key role in software maintenance tasks such as
bug localization and prediction [96]. Manual maintenance of these links is error-prone, potentially
leading to vulnerabilities. Automatic link recovery methods have been proposed, but traditional
classifiers such as Relink [203] may struggle due to limited positive links and dependency on their
number for generating negative links. To address this, Sun et al. [178] formulated the missing link
problem as a model learning problem and trained a machine learning (ML) classifier. In contrast,
Ruan et al. [158] proposed leveraging recurrent neural networks (RNNs) to learn the semantic
representation of natural language descriptions and code in issues and commits, and the semantic
correlation between issues and commits. Recently, Lan et al. [96] suggested using language models
such as BERT to further enhance performance. However, Zhang et al. [224] argued that the size
of language models is too large and proposed distilling knowledge from the CodeBERT model to
build a smaller model while maintaining competitive performance.
Prior works have also proposed multiple AI-driven approaches to identify security-related

commits automatically. For instance, Suh [177] used machine learning (ML) models such as Support
Vector Machine (SVM) to predict whether a commit is likely to be reverted based on features
extracted from the revision history of a codebase. Given the batch nature of continuous integration
deployment at scale, developers can find time-sensitive bugs in production more quickly.

4.4 Build, Test, and Deployment
4.4.1 Configuration Validation. Configuration validation is a critical aspect of DevSecOps. It
ensures that the configurations of software systems, including parameters and settings, are accurate,
optimal, and secure. Common approaches to configuration validation include manual inspection,
automated testing, and performance estimation models. The importance of configuration validation
lies in its direct impact on system reliability, performance, and security. Misconfigurations can
lead to vulnerabilities and system failures, hence making robust validation processes essential for
safeguarding software systems against potential threats [212].

Existing AI methods. Manual configuration tuning in complex software systems presents a
significant security challenge due to the extensive array of parameters for users to configure.
However, understanding the intricacies of the software required for effective tuning often exceeds
typical user capabilities [10]. This knowledge gap increases the risk of misconfigurations, leaving
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systems vulnerable to security breaches. To address this challenge, leveraging AI-driven perfor-
mance estimation can provide valuable insights into the impact of various configuration settings
on system performance and security, empowering users to make informed decisions.

In particular, deep learning-based approaches have been proposed. Ha and Zhang [67] proposed
DeepPerf, a simple feedforward neural network (FFNN) to predict performance values of highly
configurable software systems. Shu et al. [168] suggested employing generative networks with
adversarial learning, comprising a generator and a discriminator, which iteratively refine the
prediction model through competition until its predicted values converge towards the ground truth
distribution. Additionally, Cheng et al. [26] proposed to combine multi-objective optimization and
a performance prediction model to search for an optimal configuration for Spark deployed in the
public cloud. Recently, Xia et al. [207] introduced CoMSA, a Modeling-driven Sampling Approach
based on XGBoost, which prioritizes configurations with uncertain performance predictions for
further training. CoMSA is adaptable to scenarios with or without historical performance testing
results because not all software projects maintain such records. Instead of solely focusing on
improving the performance estimation models, Bao et al. [10] proposed ACTGAN which aims to
capture hidden structures within good configurations and use this knowledge to generate potentially
better configurations.
On the other hand, container orchestrators (CO) are crucial for managing container clusters in

virtualized infrastructures. Securing CO is challenging due to numerous configurable options and
manual configuration is prone to errors and time-consuming. Thus, Haque et al. [74] proposed
KGSecConfig, a machine learning-based approach for automating the security configuration of Con-
tainer Orchestrators (CO), such as Kubernetes, Docker, Azure, and VMWare. It leverages knowledge
graphs to systematically capture, link, and correlate heterogeneous and multi-vendor configuration
options into a unified structure. By employing keyword and learning models, KGSecConfig enables
the automated extraction of secured configuration options and concepts, aiding in the mitigation
of misconfigurations in CO environments.

4.4.2 Infrastructure Scanning. In DevSecOps, Infrastructure Scanning plays a crucial role in ensur-
ing the security and compliance of software systems. With the rise of Infrastructure as Code (IaC)
tools like Ansible, Chef, and Puppet, the process of provisioning and configuring infrastructure has
become more automated and scalable. These tools allow developers and operations teams to define
infrastructure configurations as machine-readable code, enabling consistent, repeatable deploy-
ments across environments. Thus, IaC is a key DevOps practice and a component of continuous
delivery [126]. However, during the development of IaC scripts, practitioners might unknowingly
introduce security smells (e.g., hard-coded passwords). These recurring coding patterns signal secu-
rity weaknesses that could lead to security breaches [150]. By integrating AI-driven IaC methods,
organizations may proactively identify and mitigate security risks in their IaC scripts. This saves
developers’ manual security inspection efforts and strengthens the overall security posture of their
systems.

Existing AI methods. Similar to other source code artifacts, Infrastructure as Code (IaC) scripts
may contain defects that hinder their proper functionality. To automate the defect prediction process
and reduce manual inspection, Rahman and Williams [151] leveraged text-mining techniques, such
as Bag-of-Words (BoW) and TF-IDF, to extract features from IaC scripts and predict defective ones
using machine learning (ML) models. They evaluated their method on Puppet IaC scripts. Rahman
and Williams [152] further conducted qualitative analysis on defect-related commits extracted from
open-source software repositories to identify source code characteristics correlated to defective IaC
scripts. They then surveyed practitioners to gauge their agreementwith the identified characteristics,
using them as features to construct their ML IaC defect prediction model. Similarly, Dalla Palma
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et al. [35] also suggested an ML-based technique to predict defects in IaC scripts. Their models rely
on various metrics, such as lines of code, IaC-specific metrics like the number of configuration
tasks, and process metrics such as the number of commits to a file, computed from the collected IaC
scripts to predict their proneness to failure. The study was particularly implemented and targeted
for Ansible-based projects.
On the other hand, Borovits et al. [15] focused on the linguistic anti-patterns in IaC. Linguistic

anti-patterns are recurring poor practices concerning inconsistencies in the naming, documentation,
and implementation of an entity. They impede the readability, understandability, andmaintainability
of source code. In particular, they proposed FINDICI, a deep learning (DL)-based approach for
anti-pattern detection in IaC. They build and use the abstract syntax tree of IaC code units to create
code embeddings used by DL models to detect inconsistent IaC code units. They also evaluated
their approach using Ansible-based projects.

4.5 Operation and Monitoring
4.5.1 Log Analysis and Anomaly Detection. In this context, AI-driven approaches play a crucial role.
Organizations leverage AI techniques to detect and mitigate anomalies in system logs effectively.
Furthermore, explainable AI (XAI) enhances this capability by providing insights into the root
causes of anomalies and facilitating informed decision-making. The application of AI-driven
anomaly detection extends beyond system logs to encompass cloud services, thereby strengthening
operations and aligning seamlessly with the principles of the DevSecOps paradigm. In the following
sections, we present our literature review focusing on these tasks.

Existing AI methods. Some studies have concentrated on machine learning (ML) models such
as support vector machines (SVM) due to their lower computation and time requirements compared
to deep learning (DL) models. For instance, Khreich et al. [92] integrated frequency and temporal
information from system call traces using a one-class SVM, which preserves temporal dependencies
among these events. Moreover, Cid-Fuentes et al. [30] observed that certain anomaly detectors rely
on historical failure data and cannot adapt to changes in system behavior at runtime. To address this
limitation, they developed a model of system behavior at runtime using SVM, thereby eliminating
the need for historical failure data and enabling adaptation to behavior changes. Similarly, Han
et al. [72] employed online SVM to adapt to noise in system log data. More recently, Yang et al.
[215] used traditional Principal Component Analysis (PCA) and achieved comparable effectiveness
to advanced supervised/semi-supervised DL-based techniques while demonstrating better stability
under insufficient training data.
Due to recent advancements in deep learning (DL), numerous studies on log-based anomaly

detection have introduced various DL-based approaches. For instance, Du et al. [45] proposed
DeepLog, one of the pioneering Recurrent Neural Network (RNN) models that treat system logs
as natural language sequences to autonomously learn patterns from normal execution log files.
Following this, several other RNN-based detectors emerged, including those by Zhang et al. [227],
who leveraged attention-based Bi-LSTM, and Meng et al. [122], who relied on the same archi-
tecture with their proposed template2Vec to extract the semantic and syntax information from
log templates. Studiawan et al. [176] employed Gated Recurrent Units (GRU) alongside sentiment
analysis to identify negative sentiment indicative of anomalous activities in operating system
(OS) logs. Furthermore, Zhou et al. [230] delved into sentence embedding with event metadata to
glean syntactic information from log data, while Wang et al. [193] introduced an online learning
paradigm and used LSTM to handle incoming new and unstable log data. In contrast, Yuan et al.
[221] leveraged LSTM-based autoencoder to reconstruct discrete event logs and showed that their
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approach can detect not only sequences that include unseen or rare events, but also structurally
abnormal sequences.

Du et al. [44] focused on the challenge of continuously updating anomaly detection systems with
new information over time. They introduced a lifelong learning framework called unlearning, which
adjusts the model upon labeling false negatives or false positives post-deployment. This framework
addressed both the challenge of exploding loss in anomaly detection and catastrophic forgetting in
lifelong learning. Furthermore, Li et al. [104] identified challenges in analyzing interleaved logs
in modern distributed systems. They propose SwissLog as a solution to these challenges. The
issues include the absence of log dependency mining, variability in log formats, and difficulty in
non-intrusive performance issue detection. SwissLog tackles these by constructing ID relation
graphs, grouping log messages by IDs, using an online data-driven log parser, and applying an
attention-based Bi-LSTM model and heuristic searching algorithm for anomaly detection and
localization.
Some existing approaches, as discovered by Le and Zhang [97], rely on a log parser to convert

log messages into log events, which are then used to create log sequences. However, errors in log
parsing can negatively impact the performance of anomaly detectors based on unsupervised or
supervised machine learning models. Thus, they introduced NeuralLog, which employs a trans-
former architecture and eliminates the need for log parsing. They used subword tokenization to
address the out-of-vocabulary (OOV) issue. Instead of treating system logs as natural language
sequences which might reduce anomaly detectors’ sensitivity to the log flaws and the concurrency
of multiple anomalies, Li et al. [102] transformed log record sequences into log event graphs using
event semantic embedding and event adjacency matrix. An attention-based Gated Graph Neural
Network (GGNN) model was then used to capture semantic information for anomaly identification.
Finally, Wu et al. [204] presented a comprehensive study investigating the effectiveness of differ-
ent representations used in machine learning and deep learning models for log-based anomaly
detection.
Some studies have delved into explainable AI (XAI) for anomaly detection in securing soft-

ware systems. For instance, Han et al. [71] introduced an interpretation methodology tailored for
unsupervised deep learning models specifically designed for security systems. Their approach
formulates anomaly interpretation as an optimization problem, seeking to identify the most sig-
nificant differences between anomalies and a normal reference. Furthermore, the interpretations
underwent validation through feedback from human security experts. Additionally, Aguilar et al.
[3] proposed a decision tree-based autoencoder aimed at anomaly detection, which offers insights
into its decisions by exploring correlations among various attribute values.
Given the complexity of managing diverse services in cloud environments, there is a need for

automated anomaly detection mechanisms that are easy to set up and operate without requiring
extensive knowledge of individual services [161]. For instance, Sauvanaud et al. [161] used machine
learning models to aid providers in diagnosing anomalous virtual machines (VMs). Recently, Lee
et al. [99] proposed Maat, a framework for anticipating cloud service performance anomalies based
on a conditional diffusion model [77]. Maat adopts a two-stage paradigm for anomaly anticipation,
consisting of metric forecasting and anomaly detection on forecasts. It employs a conditional
denoising diffusion model for multi-step forecasting and extracts anomaly-indicating features
based on domain knowledge, followed by the application of isolation forest [112] with incremental
learning to detect upcoming anomalies, thus uncovering anomalies that better conform to human
expertise.

4.5.2 Cyber-Physical Systems. Cyber-physical systems (CPS) integrate sensing, computation, con-
trol, and networking into physical objects and infrastructure, establishing connections among them

, Vol. 1, No. 1, Article . Publication date: April 2024.



AI for DevSecOps: A Landscape and Future Opportunities 21

and with the Internet to facilitate seamless interaction and automation [135]. Given the critical
need for high security in CPS to ensure safe operation, anomaly detection, relying on data analysis
and learning, emerges as a key security technology. The principles of DevSecOps, prioritizing
security at every stage of software development, intersect with CPS, particularly when software
interacts with physical systems or infrastructures. In such scenarios, the integration of AI-driven
approaches for anomaly detection and security enhancement in CPS aligns with DevSecOps goals,
aiming to seamlessly integrate security into the development and deployment processes.

Existing AI methods. Prior works have proposed leveraging Digital Twins, which are digital
replicas of physical entities [48], to train ML and DL models for anomaly detection. Digital twins
are particularly useful for anomaly detection in cyber-physical systems (CPS) due to their ability
to create virtual replicas of physical systems. For example, LATTICE [210] is a digital twin-based
anomaly detection method employing deep curriculum learning. It assigns difficulty scores to each
sample and uses a training scheduler to sample batches of training data based on these scores,
facilitating learning from easy to difficult data. This approach has shown to be more effective
than their previous DL-based proposal, ATTAIN [209]. Additionally, Xu et al. [211] identified
challenges related to data complexity and insufficiency within CPS, particularly in train control
and management systems. Consequently, they proposed employing a language model (LM) with
an LSTM architecture to understand complex data, supplemented by a knowledge distillation
technique to learn from out-of-domain datasets, addressing the issue of data insufficiency. On
the other hand, Xi et al. [205] found that existing anomaly detection methods in CPS, such as
AutoEncoder (AE) [11] or Generative Adversarial Network (GAN) [162], often overlook implicit
correlations between data points, like the relationship between vehicle speed and obstacle position
in the Intelligent Cruise Control System (ICCS), resulting in suboptimal performance. Hence, they
proposed an adaptive unsupervised learning method incorporating a Gaussian Mixture Model
(GMM), dynamically constructing and updating data correlations via KNN and dynamic graph
techniques. Lin et al. [110] focused on Industrial Control Systems (ICS) such as water and power
and leveraged the Bayesian network to discover dependencies between sensors and actuators and
recognize irregular dependencies.
On the other hand, microservice anomaly detection is vital for system reliability in a microser-

vice architecture. Xie et al. [208] focused on anomaly detection in traces within a microservice
architecture. Traces record inter-microservice invocations and are essential for diagnosing system
failures. They suggested a group-wise trace anomaly detection algorithm, which categorizes traces
based on shared sub-structures and employs a group-wise variational autoencoder (VAE) to obtain
structural representations, effectively reducing system detection overhead and outperforming exist-
ing methods that analyze each trace individually without considering the structural relationships
between them. Huang et al. [81] claimed that the main challenge arises from integrating multiple
data modalities (e.g., metrics, logs, and traces) effectively. To address this, they proposed extracting
and normalizing features from metrics, logs, and traces, integrating them using a graph repre-
sentation called MST (Microservice System Twin) graph. A transformer architecture with spatial
and temporal attention mechanisms is then employed to model inter-correlations and temporal
dependencies, enabling accurate anomaly detection.

5 RQ2: CHALLENGES AND RESEARCH OPPORTUNITIES IN AI-DRIVEN DEVSECOPS
In the previous section, we reviewed existing AI-driven security methodologies and tools for
DevSecOps to address our RQ1. Now, we will introduce themes of challenges encountered by prior
studies and derive future research opportunities to answer our RQ2. To begin, we found that some
of these challenges are shared across multiple security tasks related to the DevOps process. Thus,
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Table 5. (RQ2) The overview of the 15 challenges and future research opportunities derived from previous
studies.

DevOps Step Identified Security Task Themes of Challenges Research Opportunity
Plan Threat Modeling - -

Software Impact Analysis - -
Development Software Vulnerability Detection C1-1 - Data Imbalance R1-1 - Data augmentation and logit adjustment

C4 - Cross Project R4 - Evaluate cross-project SVD with diverse CWE-IDs
C5 - MBU Vulnerabilities R5 - Evaluate SVD on MBU vulnerabilities
C6 - Data Quality R6 - Address data inaccuracy from automatic data collection.

Software Vulnerability Classification C1-2 - Data Imbalance R1-2 - Meta-learning and LLMs
C7 - Incompleted CWE Tree R7 - Develop advanced tree-based SVC

Automated Vulnerability Repair C2-1 - Model Explainability R2-1 - Evidence-based explainable AI (XAI)
C8 - Sequence Length and Computing Resource R8 - Explore transformer variants that can process longer sequences
C9 - Loss of Pre-Trained Knowledge R9 - Explore different training paradigms during fine-tuning
C10 - Automated Repair on Real-World Scenarios R10 - Address limitations of LLMs

Security Tools in IDEs C3-1 - Lack of AI Security Tooling in IDEs R3-1 - AI tool deployment and comprehensive tool evaluation
Code Commit CI/CD Secure Pipelines C2-2 - Model Explainability R2-2 - Explainable AI (XAI) for DL Models

C3-2 - Lack of AI Security Tooling in CI/CD R3-2 - AI tool deployment in CI/CD pipelines
C11 - The Use of RNNs R11 - Explore LMs and LLMs

Build, Test, and Deployment Configuration Validation C12 - Complex Feature Space R12 - Explore transformers for tabular data
Infrastructure Scanning C3-3 - Lack of AI Security Tooling for Infrastructure Scanning R3-3 - AI tool deployment and post-deployment evaluation

C13 - Manual Feature Engineering R13 - Explore DL-based techniques
Operation and Monitoring Log Analysis and Anomaly Detection C2-3 - Model Explainability R2-3 - Explainable AI (XAI) for ML Models

C14 - Normality Drift for Zero-Positive Anomaly Detection R14 - Enhance normality drift detection
Cyber-Physical Systems C15 - Monitoring Multiple Cyber-Attacks Simultaneously R15 - Distributed anomaly detection and multi-agent systems

we will first illustrate these common challenges along with their associated research opportunities
in the following section. After that, we will proceed to introduce challenges and opportunities
specific to each security task in the DevOps process. For clarity, we will use “C” followed by a
number to represent a challenge and “R” followed by a number to represent the corresponding
research opportunity. Our answers to RQ2 are summarized in Table 5.

5.1 Common Challenges
We identified three common challenges: (C1) Data Imbalance, (C2) Model Explainability, and (C3)
Lack of AI Security Tooling. Based on our investigation of previous literature, we found that these
challenges are shared by multiple security tasks related to the DevOps process. In what follows, we
introduce these common challenges and discuss the associated research opportunities.
C1-1 - Data Imbalance in Software Vulnerability Detection (In DevOps Development).

Chakraborty et al. [21] observed that the performance of deep learning (DL)-based VD approaches
could drop 73% of the F1-score due to the data imbalance issue. Thus, Yang et al. [218] further
investigated the impact of data sampling on the effectiveness of existing state-of-the-art (SOTA)
DL-based VD approaches. Their discovery revealed that, in DL-based VD, employing over-sampling
proves more beneficial than under-sampling. Despite this observation, their experimental findings
indicate a persistent challenge: a notable proportion of cases (ranging from 33% to 58%) where
decisions were not determined by the presence of vulnerable statements. Consequently, the issue
of data imbalance persists, with models continuing to prioritize non-vulnerable code statements
when arriving at a vulnerable decision.

R1-1 - Data Augmentation and Logit Adjustment. Regarding the research opportunities
of data imbalance, Yang et al. [218] suggested that future research explore data augmentation,
emphasizing its potential value. Their results indicated that employing a straightforward repetition
strategy could enhance the performance of models. Furthermore, the issue of data imbalance is
also recognized in the computer vision domain, and proven methods like logit adjustment [123]
have demonstrated effectiveness in addressing imbalances in image classification. The application
of such methods holds the potential to improve the performance of vulnerability detection.

C1-2 -Data Imbalance in SoftwareVulnerabilityClassification (InDevOpsDevelopment).
We found that current vulnerability classification methods still suffer from the data imbalance
challenge where models have limited performance on the vulnerability types that infrequently
occur. For instance, VulExplainer [54] can correctly identify 67%-69% for common CWE-IDs while
the performance drops to 49%-56% for rare CWE-IDs. Moreover, the MOO-based vulnerability

, Vol. 1, No. 1, Article . Publication date: April 2024.



AI for DevSecOps: A Landscape and Future Opportunities 23

classification [57] could not correctly identify some of the infrequent vulnerabilities such as CWE-94
(Improper Control of Generation of Code).

R1-2 - Meta-Learning and LLMs. Fu et al. [54] showed that their VulExplainer approach
outperformed the commonly used data imbalance techniques such as focal loss [111] and logit
adjustment [123]. However, the performance on infrequent vulnerability types still has plenty
of room to improve. Thus, future research should explore other techniques to address the data
imbalance issue. For instance, meta-learning involves training models to learn a higher-level
strategy or set of parameters that enable them to quickly adapt to new, unseen tasks with limited
data. It might be suitable for imbalanced data because the exposure to diverse tasks during meta-
training helps the model generalize effectively, allowing it to adapt to tasks with imbalanced
class distributions. The transfer of knowledge across tasks and the few-shot learning nature of
meta-learning contribute to improved performance in scenarios where certain classes have limited
samples. Such an approach could also be integrated with few-shot learning of large language models
(LLMs).

C2-1 - Model Explainability in Automated Vulnerability Repair (In DevOps Develop-
ment). The advancement of language models has dramatically improved the accuracy of programs
and vulnerability repair due to the substantial model size and training data. While recent studies
focus on performance improvement, the predictions offered by those models are not explainable,
posing challenges in establishing trust between the models and users. As highlighted byWinter et al.
[201], trust in program repair is a crucial problem, in their empirical study involving Bloomberg
developers, the sentiment conveyed was that an automated repair tool should demonstrate its
reliability and foster trust with developers.
R2-1 - Evidence-based XAI. Given the complex structure of Large Language Models (LLMs),

characterized by multiple hidden layers and a large number of parameters, developing intrinsically
explainable AI to explain their repair predictions poses a significant challenge. Nonetheless, an
avenue worth exploring involves leveraging the model’s self-attention mechanism to ascertain if
it can offer meaningful explanations. In addition, future studies could delve into evidence-based
explainable AI (XAI), wherein the repair model not only presents its generated fix to end users
but also showcases a similar repair case from its training data. This approach aims to establish
trust with users, drawing inspiration from its successful application in explaining the story point
estimation model in agile software development [55].
C2-2 - Model Explainability in Software Defect Prediction (In DevOps Code Commit).

Our investigation revealed that the majority of just-in-time (JIT) software defect prediction (SDP)
methods based on deep learning (DL) primarily emphasize enhancing performance and granularity
[138, 142, 143, 214]. While more accurate and finer-grained SDP methods are beneficial for con-
structing robust and cost-effective DL-based SDP solutions, there is a noticeable lack of attention to
the explainability of these DL-based SDPs. This lack of focus on explainability presents a challenge
to the trustworthiness of DL-based SDPs.
R2-2 - XAI for DL Models. Given the complexity of DL models, explaining them is more

challenging compared to machine learning (ML) models. Nonetheless, future studies could explore
the use of extrinsic explanations such as Layer Integrated Gradient (LIG) [180], DeepLift [5, 167],
DeepLiftSHAP [114], and GradientSHAP [114], which rely on gradients or their approximations to
assess feature importance. Additionally, intrinsic explanations, such as the self-attention outputs
from transformer architectures, could also highlight significant features contributing to model
predictions. Finally, exploring case-based reasoning [1], which uses similar predictions retrieved
from the training data as supporting evidence to explain model predictions, is another promising
avenue to consider.
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C2-3 - Model Explainability in Log Analysis and Anomaly Detection (In DevOps Opera-
tion and Monitoring). Our investigation reveals that while the majority of AI-driven anomaly
detection approaches focused on performance improvement, only a few studies [3, 71] prioritized
model explainability. Explainable AI (XAI) is crucial for anomaly detection models due to several
reasons according to Han et al. [71]. Firstly, without detailed explanations for system decisions,
security operators struggle to establish trust, leading to unreliable outputs. Secondly, the black-box
nature of deep learning models makes it difficult to diagnose and address systemmistakes, hindering
effective troubleshooting. Additionally, integrating human expertise into security systems is chal-
lenging with opaque models, limiting human-in-the-loop capabilities and feedback incorporation.
Thus, the lack of focus on explainability presents a significant challenge for AI-driven anomaly
detection systems.

R2-3 - XAI for ML Models. To enhance the explainability of machine learning (ML) models in
anomaly detection, future research can explore various interpretability methods. Approaches such
as SHAP [114], LIME [156], and Breakdown [63] have demonstrated success in tasks like software
defect prediction for understanding model decisions [87]. Additionally, recent advancements in
explainable AI, such as the AIM framework proposed by Vo et al. [190], show potential for outper-
forming traditional XAI approaches like LIME and L2X, particularly in tasks like sentiment analysis.
On the other hand, causal inference holds the potential to make machine learning models more in-
terpretable [95]. By determining cause-and-effect relationships between variables, causal inference
techniques offer insights into AI-driven anomaly detection. Overall, integrating causal inference
methods into anomaly detection frameworks holds promise for enhancing model interpretability. By
uncovering causal relationships between input features and detected anomalies, these techniques
offer deeper insights into system behavior, enabling more informed decision-making by software
developers and security analysts.
C3-1 - Lack of AI Security Tooling in IDEs (In DevOps Development). Challenge -

Lack of AI-driven Tools in IDEs A significant hurdle in the current landscape is the limited
availability of AI-driven security tools in developers’ IDEs, posing a challenge to the widespread
adoption of advanced security measures in software development. The scarcity of such tools restricts
developers from harnessing the full potential of artificial intelligence in enhancing security practices.
Additionally, there is a notable absence of a comprehensive user study that thoroughly evaluates
the performance and effectiveness of existing AI-driven security tools, including prominent ones
like AIBugHunter [57] and Snyk [170]. The lack of a comprehensive user study hinders a nuanced
understanding of the strengths, weaknesses, and overall impact of these tools, impeding efforts to
establish robust security practices in the evolving landscape of software development.
R3-1 - AI Tool Deployment and Comprehensive Tool Evaluation. We outline potential

avenues for research in the domain of AI-driven security tools. Considering the extensive literature
and varied techniques available for vulnerability detection, classification, and repair, future studies
could focus on seamlessly integrating existing methods into developers’ IDEs to enhance their
practical applicability. For instance, commercial tools such as Code Scanning Autofix powered by
GitHub Copilot are available in GitHub to help developers automatically fix vulnerable code in
their pull requests. This tool is an expansion of Code Scanning that provides users with targeted
recommendations to help them fix code scanning alerts in pull requests and avoid introducing new
security vulnerabilities. The potential fixes are generated automatically by large language models
(LLMs) using data from the codebase, the pull request, and from CodeQL analysis [182]. In particular,
when a vulnerability is discovered in supported languages (i.e., JavaScript, TypeScript, Python,
and Java), Autofix will generate a natural language explanation of the suggested fix, along with a
preview of the code suggestion that the developer can accept, edit, or dismiss. Moreover, these code
suggestions can include changes across multiple files and the dependencies that should be added
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to the project [60]. Furthermore, a comprehensive evaluation of these AI-driven security tools is
imperative. This involves soliciting and analyzing user feedback, particularly the scenarios where
the tools generate inaccurate predictions. Furthermore, it is crucial to investigate the robustness
of AI-driven security tools. For example, a robust security tool should ideally predict the repaired
program as benign. However, the existing literature does not definitively address whether a program
continues to be predicted as vulnerable even after undergoing a successful repair. Exploring this
aspect would contribute valuable insights into the efficacy of AI-driven security tools in practical
scenarios.

C3-2 - Lack of AI Security Tooling in CI/CD (In DevOps Code Commit). Our investigation
revealed that the majority of just-in-time (JIT) SDP tools used in CI/CD environments, such as
JITO [147] and JITBot [91], primarily rely on machine learning models. Despite proposed deep
learning (DL)-based SDP methodologies, there is a notable absence of DL-based tools integrated
into CI/CD pipelines. This absence impedes the practical adoption of DL-based approaches.

R3-2 - AI Tool Deployment in CI/CD Pipelines. In contrast to machine learning (ML) models,
which depend on manually predefined metrics for predicting software defects, DL models can
learn source code representations directly from developers’ code without the need for extensive
feature engineering efforts. To enhance their practical adoption, future research should focus on
integrating existing DL-based approaches for JIT SDP into CI/CD pipelines. Additionally, conducting
a comprehensive evaluation of these DL-based tools is essential. This evaluation should encompass
not only performance assessment post-deployment but also a large-scale user study to gather
feedback from developers.
C3-3 - Lack of AI Security Tooling for Infrastructure Scanning (In DevOps Build, Test,

and Deployment). Our investigation has uncovered a gap between AI-driven infrastructure
scanning approaches and their practical adoption. Although several machine learning (ML)-based
methods have been proposed to detect defective Infrastructure-as-Code (IaC) scripts [15, 35, 151,
152], they have yet to be deployed as software tools for developers. The lack of deployment hinders
their practical adoption. Furthermore, the precision and practicality of these tools post-deployment
remain unexplored.

R3-3 - AI Tool Deployment and Post-Deployment Evaluation. Future research should focus
on bridging the gap between proposed AI-driven methods for detecting defective Infrastructure-
as-Code (IaC) scripts and their practical deployment as software tools for developers. Exploring
strategies to facilitate the deployment of these tools, such as developing user-friendly interfaces
and integration into existing development workflows, could enhance their practical adoption.
Additionally, investigating the precision and practicality of these tools post-deployment is crucial
to assess their effectiveness in real-world scenarios. By addressing these research opportunities,
advancements can be made towards empowering developers with effective and efficient tools for
enhancing the security of Infrastructure-as-Code.

Below, we begin introducing the challenges and research opportunities specific to each security
task in the DevOps process. Since we found no relevant literature discussing AI-driven approaches
in the planning step of DevOps, we will start with the development step.

5.2 Development
5.2.1 Software Vulnerability Detection. While the progress in code pre-trained language models
enhances the F1-score of function-level vulnerability detection, reaching up to 96.5% [174], there
remain several challenges that must be addressed in the current landscape of AI-driven vulnerability
detection. We describe challenges and potential research directions in the following.
C4 - Cross Project.Most of the VD studies considered the mixed project (models are trained

and tested on combined projects) scenario when evaluating their proposed approaches. However,
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in an empirical study evaluating SOTA DL-based VD approaches, Steenhoek et al. [175] observed a
decline in model performance during detection under the cross-project scenario (models are trained
on one set of projects and tested on completely different, non-overlapping projects). Specifically, the
F1-score of function-level detection models experienced a reduction ranging from 11% to 32%. This
underscores the challenge posed by cross-project vulnerability detection and emphasizes the limited
generalizability of current methodologies. The findings emphasize the need for advancements in
methodologies capable of generalizing effectively across various projects, especially in cross-project
scenarios.
R4 - Cross-Project SVD with Diverse CWE-IDs. Zhang et al. [223] and Liu et al. [113] both

proposed to use deep domain adaptation to address cross-project VD in C languages. Subsequent
research avenues could delve into cross-programming language VD and explore cross-project VD
for other programming languages. In particular, Liu et al. [113] mainly focused on CWE-119 and
CWE-399 while other dangerous CWE-IDs [34] should be considered in future studies. Furthermore,
the study concentrated on graph attention networks, yet there is potential for exploration of other
graph neural networks (GNNs) and large language models (LLMs) for effective cross-project VD.
C5 - MBU Vulnerabilities. Sejfia et al. [163] pointed out that state-of-the-art deep learning-

based vulnerability detection (VD) approaches concentrate on individual base units, assuming
that vulnerabilities are confined to a single function. However, vulnerabilities may extend across
multiple base units (MBU). They found that existing DL-based detectors do not work as well in
detecting all comprising parts of MBU, which poses a challenge in predicting MBU vulnerabilities.
Thus, future research should contemplate adapting their evaluation methods to incorporate the
presence of MBU vulnerabilities.

R5 - Evaluate SVD on MBU Vulnerabilities. The majority of studies on function-level VD [21,
27, 56] have typically assessed performance based on the number of correctly detected vulnerable
functions. However, it is important to note that a single vulnerability might encompass multiple
vulnerable functions. Therefore, merely identifying one vulnerable function does not necessarily
equate to the comprehensive detection of the entire vulnerability. Acknowledging this, Sejfia et al.
[163] emphasized the need for future research to account for the scenario of Multiple Base Unit
(MBU) vulnerabilities during the training and testing phases of DL-based VD. This requires refining
evaluation metrics and methodologies to align with MBU vulnerabilities. Consequently, there is a
critical call for an enhanced understanding and consideration of MBU vulnerabilities to further
advance the field of vulnerability detection.
C6 - Data Quality. Finally, Croft et al. [32] noted data quality concerns related to accuracy,

uniqueness, and consistency in widely used vulnerability datasets. Their findings revealed that a
substantial portion, ranging from 20% to 71%, of labels in real-world datasets were inaccurately
assigned. This inaccuracy had the potential to significantly impact the performance of resulting
models by up to 65%.

R6 - Addressing Data Inaccuracy from Automatic Data Collection. Croft et al. [32] pointed
out that automatic data collection often leads to data inaccuracy. Common vulnerability datasets [50,
229, 229] were constructed by using the code changes information to recover the vulnerable version
of a method. However, the vulnerability fixing commits or vulnerable lines could be incorrectly
selected. Thus, it is important for future research to devise semantic filters or heuristics—methods
or rules designed to analyze and interpret the meaning of code changes. This is crucial for precisely
pinpointing lines that signify vulnerability fixes, and addressing the data inaccuracies stemming
from the automatic data collection process.

5.2.2 Software Vulnerability Classification. In our examination of AI-driven methods explaining
vulnerability types to developers, we found that a significant amount of studies focus on vulnerability
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detection, with limited attention given to vulnerability classification. Below, we outline the challenge
identified in current AI-driven vulnerability classification approaches followed by future research
opportunities.
C7 - Incompleted CWE Tree. The TreeVul approach [137] currently relies exclusively on

parent-child relations within the CommonWeakness Enumeration (CWE) hierarchy for conducting
top-down searches. This approach excludes the consideration of other potentially valuable relations,
such as PeerOf, which could enhance the model’s effectiveness. In addition, TreeVul only considers
CWE categories with depth<=3 while some important categories may be located at depth>3. These
incomplete considerations of CWE tree structure may hinder TreeVul’s ability to generalize to
additional CWE-IDs.
R7 - Advanced Tree-based SVC. According to Pan et al. [137], TreeVul did not encompass

the entire CWE tree. Consequently, future investigations may broaden the TreeVul approach by
incorporating extra relations, such as PeerOf. Nevertheless, this procedure views the CWE structure
as a graph, introducing a higher level of complexity compared to the hierarchical tree structure
considered by Pan et al. [137]. Thus, emphasis could be placed on streamlining the transformation
process to reduce the complexities of converting the CWE tree into a graph. Furthermore, optimizing
the TreeVul approach to dynamically determine the appropriate level for concluding top-down
searches beyond the predefined depth-3 CWE categories offers an opportunity to enhance the
model’s adaptability. This optimization could involve developing a mechanism to assess confidence
levels, allowing the model to automatically adjust its search depth based on contextual factors for
each specific input. Such advancements could improve the precision and flexibility of AI-driven
vulnerability classification.

5.2.3 Automated Vulnerability Repair. Recent advancements in transformer architecture and pre-
trained language models for code have shown improvements over RNN-based models in vulnera-
bility repair and program repair tasks. Nevertheless, beyond model architecture and performance,
there are additional aspects that demand attention and further improvement, especially when
considering their integration into real-world projects. Below, we present challenges derived from
previous studies with potential research opportunities.
C8 - Sequence Length and Computing Resource.Most code pre-trained language models

(LMs) have an input length limit of 512 subword tokens for base-size models and 1024 for large-size
models. Thus, LMs may not fully comprehend long code programs due to the input length limit of
LMs, which constrains the repair capability. Furthermore, the increase in output length not only
impacts the performance of repair capability but also introduces a well-known challenge associated
with long sequences in the NMT model. This difficulty arises from the limitations imposed by
Markov chain assumptions and probabilistic constraints, where the model encounters challenges in
maintaining coherence and capturing intricate dependencies over extended sequences. In particular,
Fu et al. [58] observed that the repair model demonstrated a repair accuracy of 77% when both
input and output lengths were below 100 and 10, respectively. However, the model’s accuracy
drastically dropped to 7% when the input and output lengths exceeded 500 and 50, respectively.
In addition, Huang et al. [82] emphasized that the substantial size of language models can place a
burden on computing resources, which hinders the generation of candidate patches. For example,
during patch synthesis on the Defects4J dataset, the maximum beam size is set at 200, limiting the
generation to only 200 patches for each bug.

R8 - Transformer Variants That Process Longer Sequence. Transformer architectures have
led to remarkable progress in automated repair applications. However, despite their successes,
modern transformers rely on the self-attention mechanism, whose time- and space-complexity is
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quadratic in the length of the input that requires substantial computing resources when encoun-
tering long sequences. Recently, many alternative architectures have been proposed to mitigate
the long sequence challenge and computing burden of transformers. For example, Beltagy et al.
[12] presented Longformer which uses global and local attention windows to mitigate the memory
and time bottleneck of the self-attention mechanism from O(ns×ns) to O(ns×w), with ns being the
sequence length and w being the average window size. In particular, the base-size Longformer can
process up to 4,096 subword tokens. On the other hand, Sun et al. [179] proposed Retentive Network
(RetNet) as a new foundation architecture for large language models. The chunkwise recurrent
representation of RetNet facilitates efficient long-sequence modeling with linear complexity. Thus,
future studies may explore their efficacy in the context of program and vulnerability repair.
C9 - Loss of Pre-Trained Knowledge.Most language model-based repair approaches follow

a paradigm of taking the pre-trained checkpoint and further fine-tuning the model to fit the
downstream program and vulnerability repair tasks. Nevertheless, according to Huang et al. [82],
after fine-tuning, pre-trained models may experience a reduction in the knowledge gained during
pre-trainingwhen compared to zero-shot learning (i.e., without fine-tuning). This could be attributed
to conflicting training objectives between the unsupervised masked language modeling (MLM) of
pre-training and the supervised neural machine translation (NMT) of fine-tuning.

R9 - Explore Different Training Paradigms. Huang et al. [82] suggested two research direc-
tions to address this challenge. Future research could investigate strategies to alleviate catastrophic
forgetting [165] for program and vulnerability repair tasks. Additionally, exploring both neural
machine translation (NMT) and masked language modeling (MLM) training paradigms during the
fine-tuning stage is a potential direction. Notably, AlphaRepair [206] adopts a cloze task (MLM)
approach instead of a translation task (NMT), predicting the token at the mask location based on
contextual tokens. While employing MLM during fine-tuning could be advantageous as it aligns
with the training objective of the model’s pre-training stage, the differentiation in repair efficacy
between the two paradigms (NMT and MLM) remains unclear.
C10 - Automated Repair on Real-World Scenarios. Pearce et al. [140] found that large

language models (LLMs) can perfectly repair all of their synthetic and hand-crafted vulnerability
scenarios. However, LLMs were not sufficiently reliable when producing automatic fixes for the
real-world data in their qualitative analysis. Furthermore, they underscored the limitation of the
current repair approach, which is confined to addressing issues within a single location in a single
file.

R10 - Addressing Limitations of LLMs. Addressing the limitations of large language models
(LLMs) in real-world vulnerability scenarios presents promising avenues for future research. Pearce
et al. [140] identified the significant performance gap of LLMs in repairing synthetic and real-
world vulnerability scenarios. Thus, understanding and mitigating the factors contributing to
the discrepancy in performance between synthetic and real-world scenarios would be a valuable
direction for further investigation, enabling the development of more robust automatic fixes
in practical cybersecurity contexts. Furthermore, exploring multi-location and multi-file repair
strategies and techniques could offer valuable insights.

5.3 Code Commit
5.3.1 CI/CD Secure Pipelines. AI-driven just-in-time (JIT) software defect prediction (SDP) ap-
proaches have been proposed and deployed into CI/CD pipelines for adoption [91, 147]. However,
our investigation uncovers several challenges that must be addressed to further enhance these
AI-driven approaches. Below, we present the challenge derived from previous JIT SDP studies with
potential research opportunities.
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C11 - The Use of RNNs.We discovered that many DL-based JIT SDP methods primarily rely
on RNNs [36, 143]. However, pre-trained transformer architectures and language models (LMs)
demonstrate promise for SDP, building on their successful track record in vulnerability detection
[175], a closely related domain. RNNs excel at learning source code representations and predicting
defects without relying on predefined metrics. Nonetheless, RNNs process input sequentially and
struggle with long sequences, which can lead to suboptimal results compared to transformer-based
models.

R11 - Explore LMs and LLMs. In light of the successful application of languagemodels (LMs) for
software vulnerability detection [56, 175], future research could explore their potential for JIT SDP.
LMs like CodeBERT [51] and CodeT5 [195, 196] are transformer architectures pre-trained on source
code, featuring self-attention mechanisms that excel in capturing semantic nuances and handling
longer sequences compared to RNNs. Moreover, these LMs are pre-trained on extensive source
code datasets encompassing various programming languages, enabling them to generate better
source code representations compared to RNNs and enhancing SDP effectiveness. Furthermore,
investigating the efficacy of large language models (LLMs) such as GPT-4 [2] and Code Llama [157]
for SDP is a valuable research direction. These models are pre-trained extensively to understand
source code. Thus, future research could explore strategies for leveraging these LLMs and deploying
them to build secure CI/CD pipelines.

5.4 Build, Test, and Deployment
5.4.1 Configuration Validation. AI-driven methodologies have been suggested for automated
verification of optimal and secure system configurations. Nevertheless, the complexity of software
systems, characterized by an extensive array of configuration options, poses a challenge for machine
learning (ML) and deep learning (DL) models. Below, we present the challenge derived from previous
studies with potential research opportunities.
C12 - Complex Feature Space. Machine learning (ML) models for extracting insights from

numeric and categorical features is a widely adopted strategy in configuration validation processes.
Contemporary AI-driven performance prediction models frequently rely on conventional machine
learning models like XGBoost [207] or basic feed-forward neural networks such as Deep-Perf
[67] to analyze tabular configuration data and predict system performance. Nonetheless, software
systems often encompass an extensive array of configuration options. For instance, one of the
datasets used to evaluate Deep-Perf consists of 13,485 valid configurations [67]. The extensive
configuration size results in intricate relationships among features and an expansive feature space.
Consequently, traditional ML models and simple feed-forward neural networks may struggle to
generalize to unseen configurations or capture subtle patterns and dependencies within the data,
especially in high-dimensional spaces such as configuration datasets.

R12 - Transformers for Tabular Data. Addressing the challenge of capturing intricate relation-
ships and dependencies within high-dimensional configuration datasets presents numerous future
research opportunities in performance prediction. One promising avenue for exploration involves
leveraging more advanced model architectures, such as transformer-based models [189], to enhance
the predictive capabilities of performance prediction models. Transformer architectures, renowned
for their success in natural language processing tasks, offer the potential to effectively capture
complex patterns and dependencies within tabular data like configuration datasets. By adapting
transformer models to handle tabular data, researchers can explore their ability to learn from the
sequential and relational information present in configuration parameters and accurately predict
system performance. In addition, researchers can explore semi-supervised learning techniques
[136]. These methods leverage both labeled and unlabeled data, helping overcome the scarcity of
labeled training instances in performance prediction. In summary, these research directions could
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improve the effectiveness of AI-driven configuration validation processes in complex software
systems.

5.4.2 Infrastructure Scanning. AI-driven infrastructure scanning approaches have been proposed
for detecting insecure Infrastructure-as-Code (IaC) scripts during the deployment phase of DevOps.
Nevertheless, there remains room for improvement and identified gaps. Below, we outline the
challenge derived from previous studies with potential research opportunities.
C13 - Manual Feature Engineering.We found that some AI-driven approaches still rely on

manual feature engineering with machine learning (ML) models to predict insecure IaC scripts
[35, 151, 152], which can demand substantial effort, especially as the project scales up. It is necessary
to prepare a predetermined set of features before model training; for instance, Dalla Palma et al.
[35] prepared a set of 108 features. Subsequently, the feature selection process is essential to filter
out irrelevant features, and techniques such as normalization will be adopted to optimize ML
model performance. This time-consuming process could hinder the practical adoption of AI-driven
infrastructure scanning approaches.
R13 - Explore DL-based Techniques. Considering the recent advancement of deep learning

(DL) and language models (LMs), it is feasible to use DL models for detecting defective IaC scripts.
Unlike traditional machine learning (ML) models, DL models allow direct input of IaC scripts,
thereby eliminating the need for manual feature engineering. DL models are capable of learning
both semantic and syntactic features of IaC scripts. They can identify insecure patterns within IaC
scripts based on historical data and predict defective scripts in future instances. Additionally, LMs
have proven successful in various software security tasks, such as vulnerability detection [56, 175]
and repairs [13, 58, 73]. Given that LMs are pre-trained on vast amounts of source code data, it is
viable to fine-tune them for accurately detecting insecure IaC scripts. Hence, future research could
explore the application of DL models to address the time-consuming challenges associated with
manual feature engineering in detecting insecure IaC scripts.

5.5 Operation and Monitoring
5.5.1 Log Analysis and Anomaly Detection. Several AI-driven anomaly detection approaches have
been developed to detect anomalies in software systems. However, our investigation reveals the
challenge that requires attention and resolution. Below, we introduce the challenge derived from
previous studies with potential research opportunities.
C14 - Normality Drift for Zero-Positive Anomaly Detection. In anomaly detection, zero-

positive classification is commonly used because anomalies are typically rare and undefined.
Zero-positive classification trains models on normal behavior, allowing them to generalize to
unseen anomalies and adapt to changing data distributions. However, Han et al. [70] recognized a
normality drift problem for the zero-positive classification used in anomaly detection. Normality
drift refers to the phenomenon where the underlying distribution of normal (non-anomalous) data
changes over time in a dataset used for training AI-driven anomaly detections. In other words, the
characteristics of normal behavior exhibited by the system or environment being monitored may
evolve or shift gradually or abruptly, leading to discrepancies between the training data and the
data encountered during deployment or inference. This drift can adversely affect the performance
of anomaly detection systems, as models trained on historical data may become less effective at
identifying anomalies from the new normal behavior. Thus, addressing normality drift is crucial
for maintaining the effectiveness and reliability of anomaly detection systems.

R14 - Enhance Normality Drift Detection. Han et al. [70] introduced OWAD as a solution to
combat the challenge of normality drift encountered in deep learning-based anomaly detection
for security applications. OWAD serves as a framework designed to detect, explain, and adapt
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to normality shifts at the distribution level, departing from sample-level explanations like CADE
[216] which fail to comprehensively address the holistic shift in distribution, thereby limiting their
applicability in understanding the overall normality drift. This development paves the way for
numerous future research opportunities in anomaly detection. Particularly, there exists potential
for exploring innovative adaptation strategies within OWAD aimed at enhancing its efficacy in
adapting to evolving data distributions. This could entail investigating reinforcement learning
approaches or meta-learning techniques to dynamically adjust model parameters in response to
shifting distributions. Future investigations can also concentrate on refining OWAD’s adaptation
mechanisms to ensure effectiveness across diverse security environments.

5.5.2 Cyber-Physical Systems. AI-driven approaches have been proposed to address security
concerns in cyber-physical systems (CPS) [11, 110, 162, 205, 209–211]. However, our investigation
reveals that current approaches to CPS security primarily target individual cyber-attacks, neglecting
the complex scenario of encountering multiple simultaneous threats across diverse CPS layers.
Below, we describe this challenge and highlight potential avenues for future research.

C15 - Monitoring Multiple Cyber-Attacks Simultaneously. CPS consists of multiple layers
representing distinct components and functionalities crucial for system operation. These layers
typically include the physical layer encompassing hardware infrastructure, the communication layer
facilitating data exchange between components, the control layer governing system behavior, and
the data processing layer analyzing collected data. However, current approaches in CPS security
often focus on addressing individual cyber-attacks, overlooking the reality of facing multiple
simultaneous threats across various CPS layers [11, 110, 162, 205, 209–211]. For instance, attackers
may simultaneously disrupt communication networks, manipulate control algorithms, and tamper
with data analytics results in the smart grid CPS, posing complex challenges for system security and
resilience. As cyber threats grow in sophistication and diversity, the need to coordinate responses
and monitor ongoing attacks concurrently becomes paramount. However, achieving this in real time
presents substantial challenges due to the intricate and interconnected nature of CPS environments.
R15 - Distributed Anomaly Detection and Multi-Agent Systems. Future research could

focus on developing distributed detection and response mechanisms within CPS environments,
empowering individual components to autonomously detect and respond to cyber threats in real
time. This approach decentralizes the security architecture and reduces reliance on centralized
control systems. By integrating AI-based anomaly detections, these mechanisms could effectively
identify unusual patterns or behaviors indicative of cyber attacks across various CPS layers. Multi-
agent systems (MAS) hold promise for addressing CPS attacks across different layers due to their
decentralized and collaborative nature. MAS consists of multiple autonomous agents, each capable
of independent decision-making and action. For example, Lyu and Brennan [116] introduced a two-
layer architecture modeling framework for CPS, demonstrating how it enables real-time adaptation
in dynamic industrial automation environments. Moreover, integrating AI techniques with MAS
could facilitate collaborative decision-making and resource allocation among autonomous agents
distributed across different CPS components or layers. By leveraging reinforcement learning (RL),
agents can dynamically adapt their strategies based on feedback from the environment, allowing
them to respond to emerging cyber threats with agility and precision. For instance, Ibrahim and
Elhafiz [85] presented a case study of a smart grid and investigated CPS security using RL. In
summary, AI-driven MAS could adaptively adjust defense strategies based on evolving threat
landscapes and system conditions, enhancing the effectiveness of cyber defense operations within
CPS environments.
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6 SUPPLEMENTARY DISCUSSION: SECURITY TASKS IN DEVSECOPS
We have addressed RQ1 and RQ2 in Section 4 and Section 5, respectively. However, from our selected
publication venues, we found no associated literature discussing AI-driven security approaches
for threat modeling and impact analysis in the planning step in DevOps. Similarly, we found no
literature addressing dependency management in the code commit step in DevOps. Thus, in this
section, we discuss common approaches for threat modeling, impact analysis, and dependency
management, and their relevance to the DevSecOps principle. We also introduce potential AI
applications that can be used to facilitate these processes and enhance security.

6.1 Plan
6.1.1 Threat Modeling. Threat modeling is a systematic approach used in software development
and cybersecurity to identify and mitigate potential security threats and ensure secure DevOps
planning [43]. This process involves analyzing the system’s architecture, components, data flow,
and potential attack vectors to understand where security weaknesses may exist. One widely
adopted framework for threat modeling is STRIDE proposed by Howard and Lipner [79], which
categorizes threats into six main types: Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service (DoS), and Elevation of Privilege.
On the other hand, the DREAD framework proposed by [98] provides a structured approach

to assess the severity of identified threats. DREAD stands for Damage potential, Reproducibility,
Exploitability, Affected users, and Discoverability. This framework allows teams to assign scores
to each criterion, typically on a scale from 0 to 10, to evaluate the potential impact of a threat. By
considering factors such as the potential damage caused, the ease of exploitation, and the number
of users affected, teams can prioritize their security efforts and focus on addressing the most critical
vulnerabilities first.

Both STRIDE and DREAD threat modeling is typically conducted by human security experts,
often in collaboration with developers, architects, and other stakeholders involved in the software
development process. These collaborative processes ensure that security considerations are inte-
grated into DevOps planning throughout the development lifecycle and that potential threats are
identified, assessed, and mitigated at an early stage of development.

6.1.2 Impact Analysis. Software impact analysis is a crucial process that analyzes, predicts, and
estimates the potential consequences before a change in the deployed product [93]. Impact analysis
integrates security considerations into the planning phase of DevOps by analyzing potential
unexpected side effects of decisions or changes within a system and identifying potentially affected
areas. This process starts by identifying impacted modules and functionality, describing proposed
changes, and delineating affected areas. Risk assessment is used to evaluate potential risks associated
with each change, such as performance changes, security vulnerabilities, and compatibility issues,
often using a qualitative scale or numerical scoring system [184].
In particular, Turver and Munro [185] introduced a technique for the early detection of ripple

effects based on a simple graph-theoretic model of documentation and the themes within the docu-
mentation. This technique aims to provide a more accessible and effective approach to assessing the
impact of changes, particularly during the early stages of a project when source code understanding
may be limited. Gethers et al. [59] introduced an adaptive approach for conducting impact analysis
from a change request to the source code. The approach begins with a textual change request, such
as a bug report. It uses a single snapshot (release) of the source code which is indexed using Latent
Semantic Indexing to estimate the impact set. In particular, the analysis encompasses information
retrieval, dynamic analysis, and data mining of previous source code commits. They evaluated
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their approaches using open-source software systems and showed significant improvement in their
combined approach over standalone approaches.

Potential AI Application. The recent advancement of AI models presents promising oppor-
tunities for facilitating threat modeling and impact analysis in cybersecurity. For instance, an
AI-driven commercial tool named Aribot for threat modeling has been introduced by Aristiun [7].
Aribot automates the threat modeling process through various functionalities. It automatically
generates Infrastructure-as-Code templates, addressing public cloud-specific threats effectively.
It ensures traceable security requirements throughout the lifecycle, facilitating comprehensive
security coverage. Aribot also simplifies compliance adherence by mapping security requirements
to frameworks such as the National Institute of Standards and Technology (NIST). Additionally, it
enhances transparency and accountability by reporting and tracking records remediation efforts
by development teams, providing real-time updates on implementation status without requiring
manual intervention.
Another AI-driven commercial tool for impact analysis has been introduced by Validata [188].

This AI-based solution automatically delivers crucial information for applications, expediting
upgrades and patches while predicting the impact of new product versions before release. It
empowers users to effortlessly analyze change impact on quality, performance, resource capacity,
and costs within hours, automatically applying recommended changes through a corrective action
plan.

Moreover, Microsoft [128] has recently introduced Copilot for Security. Informed by large-scale
data and threat intelligence, including more than 78 trillion security signals processed by Microsoft
each day. Copilot is coupled with large language models (LLMs) to deliver tailored security insights.
It offers an interactive interface to support security practitioners during impact analysis and
threat modeling with relevant security knowledge. Their randomized controlled trial indicated that
experienced security analysts were 22% faster with Copilot, they were 7% more accurate across all
tasks when using Copilot, and 97% said they want to use Copilot the next time they do the same
task [47]. Copilot serves as the first critical step in leveraging generative AI to support security
practitioners in their workflow.
In summary, the adoption of AI in threat modeling and impact analysis presents significant

advantages for the planning step in DevSecOps. Tools like Aribot, Validata, and Copilot for Security
showcase the potential of AI to automate these processes effectively. By leveraging the capabilities
of AI to assess risks, identify vulnerabilities, and prioritize security measures, organizations could
make informed decisions and allocate resources more efficiently.

6.2 Code Commit
6.2.1 Dependency Management. The issue of vulnerable dependencies is widely recognized in
software ecosystems due to the extensive interconnection of free and open-source software (FOSS)
libraries [139]. Thus, dependency management plays a crucial role in assisting developers to handle
and organize the various external components or libraries that a software project relies on to
function correctly. This process involves identifying, tracking, and managing the dependencies
between different modules, libraries, or packages within a software application. Effective depen-
dency management ensures secure and resilient software development practices in DevSecOps,
mitigating the risks associated with vulnerable dependencies.

Dependency management includes package managers like npm (Node.js), pip (Python), Maven
(Java), and NuGet (.NET), which automate the installation, configuration, and versioning of depen-
dencies. In addition, there exist commercial tools that provide visibility into dependencies and help
identify and mitigate security vulnerabilities. For instance, Sonatype Nexus [172] is a repository
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manager used for managing software components. This tool allows organizations to store and
retrieve artifacts securely and efficiently. Nexus supports various package formats and integrates
with popular build tools and CI/CD pipelines, providing dependency management, security scan-
ning, and artifact promotion capabilities. Black Duck [181] is a software composition analysis
(SCA) platform designed to manage risks linked to open-source and third-party software compo-
nents. Black Duck scans codebases, detects open-source components, and assesses their compliance
with licenses, security vulnerabilities, and overall quality. It integrates with development tools
for proactive dependency management. Snyk [171] also offers a dependency management tool,
which is a developer-centric approach to application security, seamlessly integrating into existing
DevOps workflows. This tool offers a Dependency Tree View for identifying dependencies and
their vulnerabilities, automatically updating them as they evolve. With features like automated
scanning within IDEs, comprehensive vulnerability databases, and prioritized remediation, Snyk
empowers developers to proactively manage their risk exposure and maintain the integrity of their
software projects.

Potential AI Security Applications. Recently, a startup company Infield introduced an AI-driven
commercial tool designed to automate software dependency management and strengthen DevOps
security [69]. The tool continuously monitors recommended updates of open-source components,
provides step-by-step guidance for achieving the ideal status, and gathers unstructured information
about open-source dependencies and their upgrades. This data is then structured to help users
manage their backlog of upgrades efficiently, allowing them to prioritize upgrades based on risk
and effort. For instance, the tool can be connected with users’ codebase in GitHub, scans their
code to determine the underlying dependencies, and recommends the steps needed to upgrade
safely for their codebase. The tool offers a human-assisted approach to dependency management,
helping organizations overcome the challenges of maintaining dependencies in a rapidly evolving
ecosystem.

7 THREATS TO VALIDITY
Our systematic literature review (SLR) was conducted in alignment with the guidelines outlined
by Keele et al. [90], Kitchenham et al. [94]. However, like any SLR, our review also has certain
limitations. Below, we provide a discussion of the external, internal, and construct threats to the
validity of our SLR, along with corresponding mitigation strategies.

Threats to external validity relate to the search string, the filtering process, and the selection of
venues in this SLR aimed at identifying literature related to AI-driven methodologies and tools for
DevSecOps. It is possible that our search string missed studies that should have been included in
our review, potentially due to a missed term or a combination of terms that may have returned more
significant results. Given that our study focuses on two areas—AI (specifically, machine learning
and deep learning) and security methodologies and tools for integration into DevOps—we employ
a systematic approach to testing different combinations of AI-related terms and security tasks as
presented in Section 3.2. This involves experimenting with variations in search strings, including
synonyms, related terms, and alternative phrasings. By doing so, we aim to increase the likelihood
of identifying relevant studies that may have been overlooked initially. Furthermore, we leverage
our understanding of the domain to refine and optimize our search strategy iteratively to mitigate
this threat.
While conducting this systematic literature review (SLR), we acknowledge the potential for

selection bias in the studies included. To mitigate this threat, we employ rigorous inclusion and
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exclusion criteria predefined before initiating the filtering process as illustrated in Table 3. Further-
more, we implement a snowballing search strategy to supplement our initial searches as presented
in Section 3.4, thereby capturing papers that may have been overlooked initially.

The selection of venues for this SLR plays a crucial role in ensuring the reliability of our findings.
In our approach, we deliberately include top-tier SE and security conferences and journals, focusing
on venues with CORE A or CORE A* rankings. By prioritizing these esteemed venues, known for
their rigorous peer-review processes and high academic standards, we aim to uphold the quality
and credibility of the literature surveyed. While we acknowledge the possibility that our exclusion
of lower-ranking venues may have resulted in the omission of relevant studies, our deliberate focus
on top SE and security venues allows us to capture emerging trends and insights from reputable
sources. To provide transparency and accountability in our venue selection process, we disclose
the selected venues in Table 2, enabling readers to assess our review methodology.
Threats to internal validity relate to the potential absence of literature discussing AI-driven

methods or tools for specific security tasks within the DevSecOps process. Notably, despite our
comprehensive search efforts, we encountered a scarcity of studies addressing AI applications for
threat modeling and impact analysis in the plan step, as well as dependency management in the
code commit step. This gap in the literature poses a potential limitation to the comprehensiveness
of our review. We have devised a mitigation strategy to address this limitation. In addition to our
primary research questions (RQ1 and RQ2), we include a supplementary Section 6 following our RQ
discussion to examine existing approaches for threat modeling, impact analysis, and dependency
management. By scrutinizing relevant literature outside the scope of AI-driven methods, we aim to
offer a comprehensive overview of current practices and their relevance to DevSecOps.

8 CONCLUSION
AI-driven security approaches are revolutionizing the automation of software security, presenting
opportunities to seamlessly integrate security practices into the DevOps workflow and realize the
DevSecOps paradigm efficiently. Throughout this systematic literature review, we collected papers
from high-impact software engineering and software security venues, analyzing 99 papers focusing
on AI-driven security approaches tailored for DevSecOps. We unveiled 12 security tasks critical to
DevOps and examined various AI-driven security approaches and tools (RQ1). Subsequently, we
identified 19 significant challenges confronting state-of-the-art AI-driven security methodologies
and derived promising avenues for future research (RQ2). In conclusion, this paper sheds light on
the transformative potential of AI-driven security techniques in realizing the DevSecOps paradigm,
while identifying critical challenges and emphasizing the need for future endeavors to address
them in this critical intersection of AI and DevSecOps.
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