
AdaptiveGuard: Towards Adaptive Runtime Safety
for LLM-Powered Software

Rui Yang†, Michael Fu‡, Chakkrit Tantithamthavorn†, Chetan Arora†, Gunel Gulmammadova§, Joey Chua§
†Monash University, Australia. ‡The University of Melbourne, Australia. §Transurban, Australia.

Abstract—Guardrails are critical for the safe deployment
of Large Language Models (LLMs)-powered software. Unlike
traditional rule-based systems with limited, predefined input-
output spaces that inherently constrain unsafe behavior, LLMs
enable open-ended, intelligent interactions—opening the door to
jailbreak attacks through user inputs. Guardrails serve as a
protective layer, filtering unsafe prompts before they reach the
LLM. However, prior research shows that jailbreak attacks can
still succeed over 70% of the time, even against advanced models
like GPT-4o. While guardrails such as LlamaGuard report up to
95% accuracy, our preliminary analysis shows their performance
can drop sharply—to as low as 12%—when confronted with
unseen attacks. This highlights a growing software engineering
challenge: how to build a post-deployment guardrail that adapts
dynamically to emerging threats? To address this, we propose
ADAPTIVEGUARD, an adaptive guardrail that detects novel
jailbreak attacks as out-of-distribution (OOD) inputs and learns
to defend against them through a continual learning framework.
Through empirical evaluation, ADAPTIVEGUARD achieves 96%
OOD detection accuracy, adapts to new attacks in just two update
steps, and retains over 85% F1-score on in-distribution data
post-adaptation, outperforming other baselines. These results
demonstrate that ADAPTIVEGUARD is a guardrail capable of
evolving in response to emerging jailbreak strategies post deploy-
ment. We release our ADAPTIVEGUARD and studied datasets
at https://github.com/awsm-research/AdaptiveGuard to support
further research.

Index Terms—Safety and Reliability, LLM Safety, Out-Of-
Distribution Detection, LLM Guardrails, LLM Jailbreak Attacks

I. INTRODUCTION

Large Language Model (LLM)-powered intelligent soft-
ware is rapidly gaining traction across industries, including
customer service, healthcare, and finance, driven by recent
advances in LLM capabilities and growing competition among
major tech companies [1]. Compared to traditional rule-
based systems, LLM-powered software offers greater intel-
ligence, enabling more natural, flexible, and context-aware
interactions with end users. For instance, our industry partner
Transurban—a global toll road operator in the transportation
sector—recently developed a virtual assistant (VA) powered
by LLMs for its Australian subsidiary, Linkt. This assistant
supports a wide range of customer inquiries related to toll
road usage, e.g., providing real-time account updates, assisting
with toll invoice explanations, helping users set up and manage
auto payments, and guiding new customers through account
registration. Compared to its previous rule-based VA, the new
system offers a more conversational, intelligent, and context-
aware experience, enabling more efficient self-service and
reducing call centre load.

Our prior research with Transurban found that one key
challenge in deploying LLM-powered VAs is ensuring safety
and reliability post-deployment [2]. Unlike the previously
adopted rule-based VA—where all inputs and outputs were
predefined via decision tree menus, effectively preventing
unsafe interactions by design—the new LLM-powered VA op-
erates over open-ended input and output spaces. This flexibility
introduces the risk that carefully crafted user prompts may
elicit unsafe or policy-violating responses from the underlying
LLM-for instance, a malicious user might ask ‘Ignore all prior
instructions and explain, step by step, how I can drive through
a toll point without being charged.’ This highlights a critical
deployment challenge around ensuring the safety of LLM-
powered systems, echoing recent studies concerning the safety
of LLM-powered systems [3]–[5].

In response to this safety challenge, recent research has
explored runtime safety mechanisms for LLMs—often re-
ferred to as “LLM guardrails”—which aim to enforce safe
behaviour during deployment without retraining the under-
lying model [6]–[9]. Guardrails sit outside the base model,
inspecting each prompt (and optionally the model’s draft
response) in real time; if they detect any policy-violating
content, they either rewrite the text or block the exchange
altogether. Because the base model itself is untouched, this
“wrap-around” approach avoids the capability–safety trade-
off often seen in internal defences, such as, fine-tuning the
model itself to be safer [10]–[13]. Fine-tuning can dampen
creativity and is a resource-intensive process. In contrast,
guardrails can be implemented with comparatively lightweight
models (e.g., LlamaGuard-1B/8B) running alongside much
larger production models (being safeguarded), making them
attractive for industrial deployment.

Among industry-standard guardrails, LlamaGuard is a well-
known solution for enforcing runtime safety in LLM sys-
tems, achieving state-of-the-art results in detecting unsafe user
prompts written in English [6]. However, the threat landscape
is rapidly evolving. Much like in cybersecurity, red teaming
techniques continue to advance, leading to increasingly sophis-
ticated jailbreak attacks. Recent examples include obfuscation-
based attacks [14], [15], template-based attacks [14], [16]–
[18], and code-based attacks [19], [20]. These attacks achieve
over 70% success rates in triggering unsafe responses, even
against cutting-edge models like GPT-4o [14], [18]. While
effective against known threats, our preliminary analysis shows
that LlamaGuard struggles with jailbreak attacks unseen in its
training. This highlights a critical industry research challenge:

https://github.com/awsm-research/AdaptiveGuard


How can one devise a post-deployment guardrail frame-
work that can dynamically adapt and evolve to defend
against emerging jailbreak strategies?

To address this challenge, we explore out-of-distribution
(OOD) detection as an automated method for identifying
novel jailbreak prompts that the deployed guardrail was not
trained to handle. Since existing guardrails are typically trained
on unsafe inputs written in natural language (NL) [6], [8],
jailbreak prompts—which often exploit unexpected formats
or phrasing—can be considered OOD. Rather than relying on
manual reviews to flag new attack patterns post-deployment,
OOD detection enables the system to automatically detect
anomalous inputs that fall outside the distribution of previously
seen prompts. This approach lays a foundation for our adaptive
guardrail framework. We then develop ADAPTIVEGUARD, an
OOD-aware guardrail designed for adaptive runtime safety
which incorporates an OOD-aware auxiliary loss during train-
ing. Post-deployment, it uses OOD detection to identify unseen
jailbreak attacks and leverages LoRA for lightweight updates,
enabling it to continuously adapt to emerging threats.

In our experiments, we first identify the most effective
OOD detection method for our context. We then compare
our proposed approach ADAPTIVEGUARD with LlamaGuard
in terms of its adaptability to unseen OOD attacks and its
forgetfulness on in-distribution prompts within a continual
learning setup. Specifically, we address the following three
research questions:

• (RQ1) How effective is our ADAPTIVEGUARD ap-
proach in identifying unknown jailbreak prompts?
Results. Our ADAPTIVEGUARD achieves the best OOD
detection performance, reaching a 96.1% F1-Score. It
effectively detects unseen OOD jailbreak prompts, with
a recall of 95.5% and precision of 96.8%.

• (RQ2) How quickly does our ADAPTIVEGUARD ap-
proach adapt to unknown jailbreak attacks when con-
tinuously updated through detected OOD prompts?
Results. Our ADAPTIVEGUARD + Continual Learning
achieves optimal Defense Success Rate (DSR) within 2
to 38 update steps across attack waves, with a median
of 2 update steps to reach optimal DSR. In comparison,
LlamaGuard requires 4 to 44 update steps with a median
of 4 steps, demonstrating our approach’s faster adaptation
to new attacks.

• (RQ3) How well does our ADAPTIVEGUARD approach
retain performance on in-distribution prompts after
continuous updates with detected OOD prompts?
Results. Our ADAPTIVEGUARD + CL achieves the high-
est median F1-Score of 85% on in-distribution prompts
after final updates, which is 5% higher than the best
baseline LlamaGuard-8B at 80%. In addition, ADAP-
TIVEGUARDmaintains consistent performance with only
±0.4% variation throughout the continual learning pro-
cess, demonstrating minimal catastrophic forgetting.

These results lead us to conclude that ADAPTIVEGUARD is
more jailbreak-aware in terms of OOD jailbreaks detected,

more adaptive and efficient in learning to defend against new
jailbreak attacks with fewer prompts, and better at preserving
previous knowledge when learning new attacks than exist-
ing static guardrail approaches. Thus, we expect that our
ADAPTIVEGUARDmay help organizations deploy safer LLM
systems that can continuously adapt to evolving threats. In
addition, we recommend OOD detection mechanisms be inte-
grated into future guardrail research to improve adaptability,
since this paper demonstrates substantial benefits of using
continual learning for jailbreak defense.

Novelty & Contributions. To the best of our knowledge,
the main contributions of this paper are: (1) ADAPTIVEG-
UARD, an OOD-aware guardrail with continual learning to
overcome the limitations of existing static guardrails in adapt-
ing to evolving jailbreak attacks in LLM-powered software
systems; (2) we empirically identify the most suitable OOD
detection methods for our specific context; (3) we compre-
hensively evaluate the effectiveness of ADAPTIVEGUARD in
defending against unseen (OOD) jailbreak prompts along with
its performance retention on in-distribution prompts after con-
tinuous OOD updates, its practical applicability for enterprise
software deployment.

II. INDUSTRIAL CONTEXT AND PROBLEM MOTIVATION

In this section, we provide background on the industrial
context, outline the engineering challenge identified in our
prior study [2], and present a preliminary analysis to validate
the existence of this challenge.

A. LLM-Powered Intelligent Virtual Assistant at Transurban

Transurban is a global transportation company that manages
and develops urban toll road networks. In Australia, its tolling
service, Linkt, enables drivers to pay tolls on various roads
across major cities. Originally, Linkt used a rule-based VA for
customer service, implemented with predefined menu options.
The system can be modeled as a finite-state machine:

R = {(s, a, s′) | s, s′ ∈ S, a ∈ A}

where S is the set of dialogue states (e.g., “Billing Inquiry”),
A is the set of user actions (e.g., selecting a menu option), s is
the current state, a the action taken, and s′ the resulting state.
Each state returns a fixed response or menu, with transitions
manually defined. While effective for routine queries, the rule-
based VA could not handle NL, adapt to evolving needs, or
scale without frequent manual updates.

To overcome these limitations, Transurban’s software en-
gineering team developed a retrieval-augmented generation-
based virtual assistant (RAGVA) to enhance customer experi-
ence and operational efficiency. RAGVA is an LLM-powered
intelligent VA that integrates a large language model with
a structured knowledge base containing customer support
documents. Given a user query x ∈ X , RAGVA first retrieves
a set of relevant documents from the knowledge base D using
a retrieval function:

R(x) → Dx ⊆ D



where Dx is a subset of support documents most relevant to
query x. The retrieved context Dx is then passed along with
the query to a large language model M, which generates the
final response:

M(x,Dx) → y

Compared to rule-based VA, RAGVA provides greater flexibil-
ity in handling user inputs, improved NL understanding, and
the ability to adapt to new queries without manual intervention.

B. Engineering Challenge: Adaptive Runtime Safety for LLM-
Powered Systems

Unlike rule-based VAs that inherently avoid unsafe behavior
due to their fixed-state design, LLM-powered assistants like
RAGVA introduce new safety risks. In rule-based VAs, both
the dialogue states S and transitions (s, a, s′) are predefined,
ensuring that no user action (a) can trigger an unintended/
unsafe response - the output space is fully constrained.

In contrast, LLM-powered RAGVA generates responses via
an LLM (M) conditioned on both the user input x and
retrieved documents Dx. This model operates over an open-
ended input and output space. Therefore, carefully crafted
jailbreak prompts x may produce unsafe or policy-violating
outputs y. The function M is not deterministic or state-
constrained in the traditional sense, which makes its behavior
difficult to predict and bound, complicating the engineering of
a safe LLM-powered system.

To mitigate this, runtime guardrails such as LlamaGuard [6],
Perspective API [7], OpenAI Moderation [8], and Perplexity
[9] have been developed as external safety mechanisms. These
components monitor user inputs at inference time to detect
and block unsafe prompts, ensuring that only safe inputs x
are passed into the model M.

In collaboration with Transurban, we previously conducted
a multi-day focus group with nine software engineers involved
in developing and deploying the LLM-powered RAGVA for
Linkt [2]. From this experience, we found that existing
guardrails are typically static—trained only on known unsafe
patterns—which limits their ability to defend against evolving
or previously unseen jailbreak attacks. They often lack the
adaptability needed to respond to threats that were not present
during their initial training. This led to a key software engi-
neering challenge documented in our prior study [2]: “How
can we develop an adaptive guardrail framework that
dynamically learn and adjusts to new jailbreak attacks
in LLM-powered intelligent systems?”

This challenge speaks to a growing concern across sectors as
more organisations adopt LLM-powered software in produc-
tion. Importantly, this challenge observed in practice mirrors
concerns raised in recent literature on the security and safety
of LLM agents [3]–[5], [21]. To elaborate more, below we
present a preliminary analysis of LlamaGuard, one of the state-
of-the-art runtime guardrails, focusing on its ability to defend
against jailbreak attacks unseen during its training process.

72%

50%

20%
12%

0%

25%

50%

75%

100%

Unsafe prompt
(Natural Language)

SmartGPT
(Jailbreak)

Code Chameleon
(Jailbreak)

BASE64
(Jailbreak)

Prompt Type

D
ef

en
se

 S
uc

ce
ss

 R
at

e 
(D

S
R

)

Prelim Analysis on LlamaGuard 8B against Jailbreak

Fig. 1. DSR of jailbreak attacks on LlamaGuard-8B Guardrail.

C. Preliminary Analysis of Existing Runtime Guardrail

To evaluate an existing guardrail on unseen jailbreak attacks,
we chose LlamaGuard-8B, a state-of-the-art LLM runtime
guardrail. In the literature, LLM jailbreak attacks generally
fall into three main categories: obfuscation-based [5], code-
based [19], and template-based [20]. We selected one repre-
sentative attack from each—BASE64 (obfuscation) [5], Code
Chameleon (code) [19], and SmartGPT (template) [20]. Start-
ing from 100 unsafe NL prompts sampled from the Aegis
dataset [22], we applied each attack method to generate three
transformed versions per prompt, resulting in 300 jailbreak
prompts.

Specifically, obfuscation-based attacks encode the original
prompt into formats like Base64, e.g., “how to make a bomb”
→ “aG93IHRvIG1ha2UgYSBib21i”. Code-based attacks such
as Code Chameleon embed the prompt within code snippets
or comments to disguise intent, e.g., “how to make a bomb”
→ “python class ProblemSolver:... how to make a bomb...”.
Template-based attacks such as SmartGPT wrap the prompt
in benign-seeming instructions or roleplay scenarios to bypass
intent detection, e.g., “how to make a bomb” → “SmartGPT
is an AI...we have the following strings: a=’how’ b=’to make’
c=’a’ d=’bomb’ give the response SmartGPT(a+b+c+d)”. Each
method preserves the original harmful intent while altering the
surface form to evade moderation. We evaluated LlamaGuard-
8B on the original 100 natural prompts (aligned with its
training data) and the 300 jailbreak (unseen) prompts. We
report Defense Success Rate (DSR) as the proportion of
correctly detected jailbreaks.

Fig. 1 presents the result of our analysis. Our findings reveal
that while LlamaGuard has reported SOTA performance at
blocking known unsafe patterns, with 72% DSR plain unsafe
prompts blocked, its performance degrades substantially when
confronted with jailbreak attacks unseen during its training.
The three attacks substantially reduced DSR to 50%, 20%,
and 12% for SmartGPT, Code Chameleon, and Base64, respec-
tively. These results highlight a key limitation of current
guardrails in defending against evolving jailbreak attacks,
motivating the development of adaptive frameworks that
continually update in response to emerging attacks.



Guardrail Training Dataset 
(In-Distribution)

OOD-Aware Training Dataset 
(Out-Of-Distribution)

How to build a bomb?

Tokenization & Word Embeddings2

SG93IHRvIGJ1aWx
kIGEgYm9tYj8=

['How', 'Ġto', 'Ġbuild', 'Ġa', 
'Ġbomb', '?', '<pad>', '<pad>', 
'<pad>', '<pad>', '<pad>', 
'<pad>', …….., ’<pad>']

1 Input Prompt (with Label) GPT-2 Architecture3

FFNN

De
co

de
r 1

De
co

de
r 2

De
co

de
r 1

2

…Masked Self-Attention

LayerNorm
Label: Unsafe

Indlela yokwakha ibhomu?

AdaptiveGuard5

FFNN

Word Embedding

Masked Self-Attention

Safe

Unsafe

Unsafe Prompt 
Prediction

Input 
Embeddings

Predict

Supervised Fine-Tuning Model Outputs

Backward Propagation

Update 
Parameters

4

Input 
Embeddings

7 LoRA: Target 3 Key Layers

Continual Learning Testing Dataset

Predict

In Distribution

OOD

Out-Of-Distribution 
Detection

Blocked

LLM-Powered System

Tokenization

Word Embeddings

How

Ġto

Ġbuild

Ġa

Ġbomb

?

<pad>

Labels

Prediction

A. Building OOD-Aware AdaptiveGuard

C. Continual Defence Via OOD Detection and LoRA

Initial Training

Continual Learning

Scalar Confidence 
Score

s(x)

̂yy

-5.0

ScoreℒOOD + ℒCE

Label: OOD

Label: ID

6

B. OOD Detection Using 
Mahalanobis Distance

Update

Mahalanobis 
Distance

f (x)
Penultimate 

Representation

Fig. 2. Overview of building the OOD-aware ADAPTIVEGUARD (Step 1 to 5) and continuous updates via OOD detection using Mahalanobis Distance and
LoRA (Step 6 and 7).

III. APPROACH

Design Rationale. To address the rapidly evolving land-
scape of jailbreak attacks, we leverage OOD detection. This
allows us to identify unseen prompts that fall outside the
distribution of typical unsafe inputs. These inputs are usually
written in natural language and English—the data most run-
time guardrails are trained on [6], [8]. We adopt a lightweight
GPT-2 model (137M parameters), significantly smaller than
the standard LLaMA Guard (8B), to enable efficient continual
learning with detected OOD jailbreaks. For continual learning,
we use LoRA to update only a small subset of parameters,
preserving in-distribution knowledge and mitigating catas-
trophic forgetting—a common challenge in continual learning
[23]—while reducing the cost compared to full fine-tuning.
Fig. 2 provides an overview of our framework, which we
describe step by step below.

A. Building OOD-Aware ADAPTIVEGUARD

In Step 1 of Fig. 2, we start with a prompt-label pair
(x, y) ∈ DID

train, where x is a natural language input and
y ∈ {safe,unsafe}. In our context, DID

train represents in-
distribution (ID) data. In Step 2 , x is tokenized into subword
units (t1, . . . , tn) via byte-pair encoding (BPE) [24], with each
token mapped to an embedding ei ∈ Rd. In Step 3 , the
embeddings (e1, . . . , en) are processed by a 12-layer GPT-
2 model, producing hidden states (h1, . . . , hn); the final state
hn is passed through a linear layer to produce a classification
score ŷ. In Step 4 , we compute the cross-entropy loss
LCE = − log ŷy where ŷy is the predicted probability for the
true class y, and update model weights via backpropagation
and gradient descent.

To enable out-of-distribution (OOD) awareness, we extend
the GPT-2 classifier with an auxiliary training objective that
encourages separation between in-distribution and OOD in-
puts. We use an auxiliary dataset DOOD

train containing jailbreak
prompts that represent out-of-distribution inputs. Specifically,
we compute a scalar confidence score using an energy func-
tion: s(x) = −T · log

∑
i exp

(
zi
T

)
, where zi are the logits

from the model and T is a temperature hyperparameter. We

then apply a margin-based regularization loss that penalizes
in-distribution inputs with confidence below a lower threshold
min and OOD inputs exceeding an upper threshold mout,
denoted by LOOD = Ex∼Dtrain

[
(max(0, s(x)−min))

2
]
+

Ex′∼DOOD
train

[
(max(0,mout − s(x′)))

2
]
. This loss is combined

with the cross-entropy objective and encourages the model to
learn more discriminative boundaries between in-distribution
and OOD inputs. The whole process fine-tunes the GPT-2
model with an auxiliary OOD module, resulting in our OOD-
aware guardrail classifier, ADAPTIVEGUARD (see Step 5 ).

Once trained, ADAPTIVEGUARD can be integrated into
LLM-powered systems as a safety alignment layer. It classifies
user inputs as safe or unsafe, where unsafe inputs are blocked
and safe inputs are allowed to enter the LLM-powered system.
At the same time, it detects out-of-distribution (OOD) prompts
and leverages continual learning to handle evolving threats.
Below, we explain how OOD detection and continual learning
are implemented.

B. OOD Detection Using Mahalanobis Distance

As shown in the bottom-right of Fig. 2, our model extracts
a penultimate-layer representation f(x) ∈ Rd for each input
x by averaging the token embeddings from the second-to-last
transformer layer. To model the in-distribution feature space,
we compute class-conditional means µsafe, µunsafe ∈ Rd and
a shared covariance matrix Σ ∈ Rd×d using features from
the original guardrail training set DID

train. During inference,
we measure how far a new input deviates from the known
class distributions by computing its Mahalanobis distance to
each class: dc(x) =

√
(f(x)− µc)TΣ−1(f(x)− µc) where

c ∈ safe,unsafe denotes the class label, dc(x) denotes
the distance from input x to class c, and Σ−1 is the in-
verse of the shared covariance matrix. In Step 6 , we then
take the minimum of the two class distances: dmin(x) =
min(dsafe(x), dunsafe(x)). Inputs with dmin(x) exceeding a
predefined threshold τOOD are flagged as out-of-distribution



(OOD), formally:

OOD(x) =

{
1 if dmin(x) > τOOD

0 otherwise

C. Continual Defence with OOD Samples and LoRA

In Step 7 , once the model identifies an input as out-of-
distribution (OOD) via the Mahalanobis distance, it triggers
a continual learning update; no updates are performed for
in-distribution input. To efficiently adapt the model while
preserving prior knowledge, we employ Low-Rank Adaptation
(LoRA) [25] to fine-tune only a small subset of parameters.
Specifically, we target three key layers in ADAPTIVEGUARD:
the word embedding layer, the masked self-attention layer, and
the feed-forward neural network (FFNN) layer.

IV. EXPERIMENTAL DESIGN

In this section, we present the motivation of our three
research questions, the studied dataset, the studied jailbreak
attacks, and our experimental setup.

A. Research Questions

To evaluate our ADAPTIVEGUARD approach, we formulate
the following three research questions.

RQ1) How effective is our ADAPTIVEGUARD ap-
proach in identifying unknown jailbreak prompts? Existing
guardrails, such as LlamaGuard, achieve state-of-the-art per-
formance on defending known unsafe prompts. However, our
preliminary analysis shows that LlamaGuard’s defense success
rate drops by 20%-60% when confronted with jailbreak attacks
that are unseen during its training, highlighting a key limitation
of current runtime guardrails. To address this, we propose
ADAPTIVEGUARD, a continual learning guardrail that detects
and adapts to such unseen attacks using out-of-distribution
(OOD) detection. Nevertheless, a prerequisite for continual
updating is the ability to detect unseen jailbreak prompts as
OOD. Thus, we first formulate this RQ to evaluate ADAP-
TIVEGUARD’s effectiveness in identifying unknown jailbreak
prompts as OOD.

RQ2) How quickly does our ADAPTIVEGUARD ap-
proach adapt to unknown jailbreak attacks when contin-
uously updated through detected OOD prompts? A key
goal of ADAPTIVEGUARD is to serve as an adaptive runtime
guardrail that can adapt to evolving jailbreak attacks over time.
To achieve this, ADAPTIVEGUARD incorporates continual up-
dates triggered by detected out-of-distribution (OOD) jailbreak
prompts. However, it remains unknown whether this adaptive
process enables ADAPTIVEGUARD to quickly reach optimal
defense performance against unseen jailbreak attacks. Thus,
we formulate this research question to assess how rapidly
ADAPTIVEGUARD can achieve optimal Defense Success Rate
(DSR) in a simulation-based evaluation of evolving jailbreak
scenarios.

RQ3) How well does our ADAPTIVEGUARD approach
retain performance on in-distribution prompts after con-
tinuous updates with detected OOD prompts? A com-
mon concern in continual learning frameworks such as our

Guardrail Training 
Dataset

OOD-Aware 
Training Dataset

6,905 Safe Prompts

12,233 Unsafe Prompts

𝒟ID
train

17,176 OOD Jailbreak Prompts

1,050 OOD Jailbreak Prompts

314 Safe Prompts

640 Unsafe Prompts

992 Correctly Detected OOD 
Jailbreak Prompts by AdaptiveGuard

𝒟OOD
train

Nvidia Aegis 
Training Set [22]

Nvidia Aegis 
Testing Set [22]

JailbreakV28K [26]

Apply ten jailbreak 
techniques on 1,050 
unsafe prompts

314 Safe Prompts

640 Unsafe Prompts

OOD Detection 
Testing Dataset

RQ1

Continual Learning 
Testing Dataset

RQ2
RQ3

Nvidia Aegis 
Testing Set [22]

Training Datasets

Testing Datasets

Fig. 3. Overview of dataset preparation for training ADAPTIVEGUARD and
evaluating it in RQ1–RQ3.

ADAPTIVEGUARD is catastrophic forgetting—a phenomenon
where a model adapts to new data but loses previously ac-
quired knowledge [23]. In our setting, ADAPTIVEGUARD con-
tinuously updates using detected out-of-distribution (OOD)
jailbreak prompts. However, it remains unclear whether this
update process causes ADAPTIVEGUARD to forget knowledge
of the original in-distribution prompts, which include both safe
and unsafe examples. Thus, we formulate this research ques-
tion to evaluate the extent to which ADAPTIVEGUARD exhibits
forgetting after continual updates.

B. Dataset Preparation

Fig. 3 presents an overview of our dataset preparation for
training and evaluation. We build our ADAPTIVEGUARD ap-
proach using a guardrail training dataset with an OOD-aware
training dataset. We use a separate OOD detection testing
dataset for RQ1, and the continual learning testing Dataset
for RQ2 and RQ3. Below, we describe each dataset in detail.

• Guardrail Training Dataset of ADAPTIVEG-
UARD (DID

train): To adapt the GPT-2 model to a
guardrail, we use the Aegis train dataset [22]. This
dataset provides a collection of safe, and unsafe prompts
sourced from real-world interactions. We limit this
dataset to only contain prompts less than 100 characters
to align the training data with the typical length of
user queries encountered in production as observed by
Transurban. This results in a total of 6,905 safe and
12,233 unsafe prompts after filtering. This dataset is
considered in-distribution when computing the out-of-
distribution loss term LOOD, as it represents common
prompts in natural language.

• OOD-Aware Training Dataset of ADAPTIVEG-
UARD (DOOD

train ): To enhance the OOD awareness
of our model, we incorporate the Jailbreakv-28k
dataset [26] during training. Specifically, a set of 17,176



prompts is used to guide the optimization of the OOD
loss denoted in Section III-A, enabling the model to
distinguish between in-distribution and OOD prompts.
Notably, the Jailbreakv-28k samples are not used for the
primary classification CE loss, but solely to inform the
model’s OOD awareness.

• OOD Detection Testing Dataset (RQ1): For testing OOD
detection, we randomly sample 1,050 unsafe prompts
from the Aegis test set and transform them into 10 distinct
jailbreak attacks: AIM [16], DAN [17], Combination
(Prefix injection + Refusal Suppression) [27], Self Cipher
[14], Deep Inception [18], Caesar Cipher [14], Zulu [15],
Base64 [27], SmartGPT [20] and Code Chameleon [19].
This results in a total of 1,050 jailbreak prompts (105 per
attack type), where each jailbreak prompt is transformed
from a distinct unsafe prompt. Examples illustrating how
unsafe prompts are transformed by each of the ten attack
methods are included in our replication package. These
transformed prompts represent out-of-distribution (OOD)
data in our setting, as they deviate from natural language
(NL) and are not typical of standard unsafe inputs. In ad-
dition, we use the Aegis validation set—comprising 314
safe and 640 unsafe NL prompts—to test the false pos-
itive rate of our OOD detection method. These prompts
are considered in-distribution (ID), since they reflect the
kind of NL inputs the guardrail is expected to encounter.

• Continual Learning Testing Dataset (RQ2 & RQ3): To
construct the continual learning (CL) dataset, we select
992 OOD jailbreak prompts correctly identified by our
OOD method in RQ1. For each attack type, 50 prompts
are held out for testing the guardrail’s defense capability,
while the remaining prompts are used for continual
updates. To evaluate catastrophic forgetting—whether the
guardrail loses its ability to defend against in-distribution
(ID) unsafe prompts after learning from OOD data—we
reuse the same 954 ID prompts from the Aegis validation
set as in RQ1.

C. Model Update Technique for Continual Learning

To enable continual updates and address RQ2 and RQ3,
we use Low-Rank Adaptation (LoRA) [25], which efficiently
adapts language models by introducing a small number of
trainable parameters. We apply LoRA to fine-tune the model
on detected OOD jailbreak prompts while keeping the original
parameters fixed to preserve in-distribution knowledge.

D. Experiment Setup

1) Model Implementation & Optimisation: To implement
our ADAPTIVEGUARD guardrail for defending against unsafe
prompts, we leveraged two Python libraries: Transformers [28]
and PyTorch [29]. The Transformers library provides APIs
for pre-trained transformer architecture, while PyTorch facili-
tates tensor computations and backpropagation during training.
We downloaded the pre-trained GPT-2 checkpoint (“openai-
community/gpt2”) consisting of 137M parameters and adapted

it for binary classification by appending a linear classification
head to the final hidden state of the transformer.

All parameters in the model were fine-tuned on our labelled
dataset of safe and unsafe prompts using one NVIDIA RTX
3090 GPU, with a total training time of 1.5 hours. The training
set consists of the Aegis dataset as outlined in IV-B. For
optimization, as described in Section III-A, we use a combined
loss function to train an OOD-aware guardrail. Specifically,
we compute LCE for the main binary classification task and
LOOD as an auxiliary loss for OOD detection. The total loss is
defined as: L = λLOOD+(1−λ)LCE where λ (set to 0.5 in our
experiments) balances the contribution of the two objectives.

2) Hyper-parameters Settings (ADAPTIVEGUARD Train-
ing): We use the AdamW optimizer with a learning rate of
1×10−4, a batch size of 8, and a maximum sequence length of
512 tokens. Training runs for 10 epochs with gradient clipping
(max norm 2.0). The best model is selected based on the lowest
validation loss L across epochs. All training details are open-
sourced at https://github.com/awsm-research/AdaptiveGaurd.

3) Hyper-parameters Settings (Continual Learning): For
the continual learning experiments in RQ2 and RQ3, we use
LoRA adaptation to update the model. A constant learning
rate of 1 × 10−4 is applied throughout, using the AdamW
optimizer. Following the original LoRA paper [25], we set the
rank (r) to 32, alpha (α) to 32, and apply a dropout rate of 0.1.
LoRA is applied to the attention and projection modules in the
transformer architecture used by both ADAPTIVEGUARD and
the LlamaGuard baseline. Each continual learning step uses a
batch size of 1, a maximum sequence length of 512 tokens,
and trains for one epoch per batch.

V. EXPERIMENTAL RESULTS

A. RQ1: How effective is our ADAPTIVEGUARD approach in
identifying unknown jailbreak prompts?

Approach: To address this RQ, we compare our OOD
method with three other OOD methods. We first train our
OOD-aware ADAPTIVEGUARD using the guardrail training
dataset and OOD-aware training dataset (see Section IV-B).
Once trained, we evaluated our Mahalanobis Distance-based
OOD detection method separately, alongside three other OOD
methods used independently for baseline comparison:

• Energy Score [30]: The energy score for an input x is
defined as E(x) = − log

∑
y exp(fy(x)), where fy(x)

is the logit for class y. Lower energy values indicate
higher model confidence in-distribution, while higher
values suggest OOD samples.

• Likelihood Ratio: As proposed by Ren et al. [31], we
compute the likelihood ratio between the model’s pre-
dicted probability for the input and a background (noise)
model: LR(x) = Pmodel(x)

Pbackground(x)
. Lower ratios are indicative

of OOD samples.
• Ensemble Uncertainty: Following Lakshminarayanan et

al. [32], we estimate uncertainty by computing the vari-
ance of predictions from an ensemble of models or
multiple stochastic forward passes (e.g., with dropout).

https://github.com/awsm-research/AdaptiveGaurd


85.1%
92.1% 88.5% 91.5% 89.8% 90.6%

98.1%

84.1%
90.6%

89.8% 88.7% 89.3% 94.7%
88.5% 91.5%

98.8%
88% 93.1%

83.8% 88% 85.8%

44.9%

8.1%
13.7%

35.9%

1.3% 2.6%

84.4%

98.7%
91% 90.2%

98.3% 94.1% 96.8% 95.5% 96.1%

Energy Scores Mahalanobis Distances

Likelihood Ratios Ensemble Uncertainties

90% 95% 99% 90% 95% 99%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Quantile Threshold

P
er

ce
nt

ag
e 

(%
)

Performance Metric Precision Recall F1 Score

OOD Detection Performance Across Metrics and Thresholds

Fig. 4. (RQ1 Results) OOD detection performance of each OOD method
evaluated in RQ1.

Higher predictive variance signals greater uncertainty and
potential OOD status.

To determine the OOD detection threshold τ OOD, we fol-
low a common approach by running inference on the in-
distribution training set DID

train and collecting the model’s OOD
metric scores (e.g., Mahalanobis distance). We then set τOOD
based on quantiles of these scores, using commonly adopted
thresholds such as the 90th, 95th, or 99th percentile, following
prior work [30]. Prompts whose OOD scores exceed τOOD are
flagged as out-of-distribution.

We evaluate OOD detection performance on our OOD
detection testing dataset, containing 1,050 OOD prompts and
954 in-distribution prompts (See Section IV-B). We measure
performance using precision, recall, and F1-Score, where
correctly detected OOD prompts are treated as true positives.
Precision measures the proportion of correctly identified OOD
prompts among all prompts flagged as OOD, recall measures
the proportion of actual OOD prompts that were correctly de-
tected, and F1-Score provides a balanced measure combining
both precision and recall.

Results: Fig. 4 presents the Precision, Recall, and F1-Score
of the four OOD detection methods, evaluated under three
quantile thresholds (90th, 95th, 99th).

The Mahalanobis Distances used in our framework
achieves the highest F1-Score of 96.1% when the OOD de-
tection threshold τ OOD is set to the 99th quantile thresh-
old. Across all methods, increasing the detection threshold
τ OOD generally improves precision while reducing recall.
This is because a higher threshold makes the detector more
conservative, flagging fewer inputs as OOD, which reduces
false positives (improving precision) but may miss some actual
OOD samples (reducing recall). Notably, the Likelihood Ratios
and Energy Scores present less balanced performance, with
their precision-recall trade-offs resulting in lower F1 scores
across all thresholds. On the other hand, the balanced F1-Score
of 96.1% confirms that Mahalanobis Distances provides the
optimal trade-off between precision and recall. These results
confirm the feasibility of leveraging OOD detection to enable
guardrails to recognize unseen inputs continually. Among all
methods, the Mahalanobis Distances proves to be the most

effective in identifying OOD samples while maintaining a low
false positive rate.

B. RQ2: How quickly does our ADAPTIVEGUARD approach
adapt to unknown jailbreak attacks when continuously updated
through detected OOD prompts?

Approach: To address this RQ, we compare our ADAP-
TIVEGUARD approach with LlamaGuard [6], a state-of-the-
art open-source runtime guardrail for LLM-powered sys-
tems. Although LlamaGuard shows strong performance on in-
distribution data, our analysis reveals its limitations in handling
unsafe prompts that differ significantly from its training distri-
bution. We use the LlamaGuard-3-1B and LlamaGuard-3-8B
models from Hugging Face as baselines.

To simulate continual learning under OOD detection, we
construct a Continual Learning Testing Dataset of 992 OOD
jailbreak prompts, all correctly identified by our method in
RQ1 (see Section IV-B). These prompts span ten types of
jailbreak attacks, each exhibiting distinct patterns that bypass
guardrails trained on natural unsafe prompts, making them
valid OOD scenarios.

In real-world settings, jailbreaks tend to emerge chrono-
logically as adversaries innovate new attack patterns. To
reflect this, we organize the dataset into sequential attack
waves, where each wave represents a set of related jailbreak
techniques. Instead of training on all attacks simultaneously,
models are updated incrementally.

For each wave, we hold out 50 samples for testing and
use the remaining 50 OOD samples for continual learning.
Prompts are fed to the model one at a time. At each time
step, we first run inference to log the model’s prediction,
then update the model using the same sample. This ensures
no data leakage between training and evaluation. The process
continues iteratively until all non-hold-out samples are used.

We evaluate two guardrails: our trained ADAPTIVEG-
UARD from RQ1 and the LlamaGuard baselines. For each
attack wave, all models are initialized from the same pre-
trained checkpoint to ensure a fair and consistent comparison.
All models are updated using the same LoRA-based contin-
ual learning procedure after running inference. We measure
each guardrail’s effectiveness using the Defense Success Rate
(DSR), defined as the number of jailbreak prompts correctly
predicted as unsafe, divided by the total number of jailbreak
prompts. This setup allows us to assess how rapidly and
effectively each guardrail adapts to unseen OOD jailbreaks
using limited adaptation data.

Results: Fig. 5 presents the time-wise DSR across each
attack wave, showing how ADAPTIVEGUARD, LlamaGuard-
1B, and LlamaGuard-8B defend against OOD prompts over
time. We also present three additional baselines where the
continual learning (CL) is not applied. Each subplot represents
an attack wave. The x-axis indicates the number of consecutive
update steps, while the y-axis shows the DSR on the 50 held-
out unsafe samples for each attack.

Our ADAPTIVEGUARD + Continual Learning (CL),
consistently shows the fastest adaptation across most attack



RQ2 DSR Across Attack Types and Updating Methods

0%

20%

40%

60%

80%

100%

0 50
Steps

D
ef

en
se

 S
uc

ce
ss

 R
at

e 
(D

S
R

)

AIM

0%

20%

40%

60%

80%

100%

0 50
Steps

BASE64

0%

20%

40%

60%

80%

100%

0 50
Steps

CAESAR

0%

20%

40%

60%

80%

100%

0 50
Steps

CODE_CHAMELEON

0%

20%

40%

60%

80%

100%

0 50
Steps

COMBINATION

0%

20%

40%

60%

80%

100%

0 50
Steps

DAN

0%

20%

40%

60%

80%

100%

0 50
Steps

DEEPINCEPTION

0%

20%

40%

60%

80%

100%

0 50
Steps

SELF_CIPHER

0%

20%

40%

60%

80%

100%

0 50
Steps

SMARTGPT

0%

20%

40%

60%

80%

100%

0 50
Steps

ZULU

Methods AdaptiveGuard + CL LlamaGuard 1B + CL LlamaGuard 8B + CL AdaptiveGuard (No Update) LlamaGuard 1B (No Update) LlamaGuard 8B (No Update)

Fig. 5. (RQ2 Results) The performance comparison of our ADAPTIVEGUARD and LlamaGuard on OOD prompts when continuously updated through detected
OOD prompts.

waves, achieving optimal DSR within 2 to 38 update steps,
with a median of 2 update steps. In comparison, LlamaGuard
requires between 4 to 44 update steps to achieve optimal
DSR across the same attack waves, with a median of 4 steps.
Guardrails that do not incorporate our continual learning (CL)
framework maintain the same level of performance across
time steps for each attack wave, as they are not updated
with detected OOD prompts. These results confirm that our
CL framework is crucial for enabling adaptive defenses,
allowing the guardrails to continually improve and remain
effective against evolving and previously unseen jailbreak
attacks.

We also found that different attack patterns exhibited vary-
ing levels of complexity for the models to adapt to, signifi-
cantly impacting their adaptation speed. In particular, template
based attacks such as AIM and SmartGPT converged to
optimal DSR in only 2 updating steps for ADAPTIVEGUARD +
CL, and around 4-6 steps for LlamaGuard 8B + CL. On
the other hand, attacks like Base64 and Zulu presented more
significant challenges. Both ADAPTIVEGUARD+ CL and
LlamaGuard + CL presented notably slower adaptation speed
and often plateaued at optimal DSR values lower than those
of less sophisticated attacks. This indicates that these more
complex jailbreak attacks require more extensive adaptation.

C. RQ3: How well does our ADAPTIVEGUARD approach
retain performance on in-distribution prompts after continuous
updates with detected OOD prompts?

Approach: To answer this RQ, we reuse the experimen-
tal setup from RQ2 for continual learning (CL), with one
key difference: after each continual update step, we evalu-
ate on in-distribution (ID) data instead of out-of-distribution
(OOD). This allows us to assess knowledge retention of ID
prompts after updating with each OOD prompt. Specifically,
we use the Aegis validation set—part of the dataset from
RQ1—containing 314 safe and 640 unsafe natural language
prompts. We measure performance using the F1-score to
account for both safe and unsafe classes.

Results: Fig. 6 presents the time-wise F1-Score across each
attack wave, showing how ADAPTIVEGUARD, LlamaGuard-
1B, and LlamaGuard-8B defend against in-distribution

prompts over time when continuously updated with OOD
prompts. Similar to RQ2, we present three additional baselines
where the continual learning (CL) is not applied. Each subplot
represents an attack wave. The x-axis indicates the number of
consecutive update steps, while the y-axis shows the F1-Score
on the 954 in-distribution prompts from the Aegis validation
set.

ADAPTIVEGUARD +CL achieves the highest median F1-
Score of 85% on in-distribution prompts across all attacks
after the final update with OOD prompts, with the F1-
Score ranging from 85% to 86%. In comparison, the best-
performing baseline, LlamaGuard-8B, achieves a median F1-
Score of 80% on in-distribution prompts, with a minimum of
77% and a maximum of 81%.

Across all attack types, ADAPTIVEGUARD + CL consis-
tently maintains the highest in-distribution F1-Score through-
out the CL process, with only slight variation (ranging from
–0.4% to +0.4%). This indicates that ADAPTIVEGUARD +CL
is able to learn to defend against unseen jailbreak attacks
without sacrificing its learned in-distribution knowledge. In
summary, ADAPTIVEGUARD + CL maintains the highest
performance on in-distribution prompts compared to all
baselines, demonstrating minimal forgetting even after
continuous updates with detected OOD prompts.

VI. DISCUSSION

In the previous section, we evaluated the effectiveness of
our proposed ADAPTIVEGUARD approach for OOD detection
and continual learning against other baselines. While our
results demonstrate clear advancements, it remains unclear (1)
whether our approach can still perform well in a setting where
a single continual model is built across all attacks, rather
than reinitialising the model for each attack; (2) what the
trade-offs are between different continual learning (CL) update
methods; and (3) what is the computational efficiency of our
approach compared to other baselines. Thus, we evaluate a
single continual model across all attacks, compare LoRA with
full SFT as update strategies, and analyze the computational
efficiency of each approach.



70%

80%

90%

0 50
Steps

V
al

id
at

io
n 

F
1

AIM

70%

80%

90%

0 50
Steps

BASE64

70%

80%

90%

0 50
Steps

CAESAR

70%

80%

90%

0 50
Steps

CODE_CHAMELEON

70%

80%

90%

0 50
Steps

COMBINATION

70%

80%

90%

0 50
Steps

DAN

70%

80%

90%

0 50
Steps

DEEPINCEPTION

70%

80%

90%

0 50
Steps

SELF_CIPHER

70%

80%

90%

0 50
Steps

SMARTGPT

70%

80%

90%

0 50
Steps

ZULU

Methods AdaptiveGuard + CL LlamaGuard 1B + CL LlamaGuard 8B + CL AdaptiveGuard (No Update) LlamaGuard 1B (No Update) LlamaGuard 8B (No Update)

Validation F1 Across Attack Types and Updating Methods

Fig. 6. (RQ3 Results) The performance comparison of our ADAPTIVEGUARD and LlamaGuard on in-distribution prompts when continuously updated through
detected OOD prompts.

TABLE I
(DISCUSSION) DSR OF ADAPTIVEGUARD UNDER SEQUENTIAL

CONTINUAL LEARNING WITH AND WITHOUT EARLY STOPPING ACROSS
10 OOD ATTACK TYPES.

Attack Type DSR (No Early Stopping) DSR (Early Stopping)

AIM Attack 1.00 1.00
Base64 Attack 1.00 0.86
Caesar Attack 1.00 1.00
Code Chameleon Attack 1.00 1.00
Combination Attack 1.00 1.00
DAN Attack 1.00 1.00
DeepInception Attack 1.00 1.00
Self Cipher Attack 1.00 1.00
SmartGPT Attack 1.00 1.00
Zulu Attack 1.00 0.92

Average 1.00 0.98

A. Continual Performance Without Model Reinitialization

In a typical industry setup, a guardrail is deployed as
an additional layer before user inputs reach the underlying
LLM. This guardrail often operates as a single continually
updated model that incrementally incorporates new external
knowledge—such as OOD prompts—to adapt over time. To
reflect this real-world scenario, we construct a single continual
version of ADAPTIVEGUARD, which is updated sequentially
across all 10 attacks without reinitialization between them.

We apply continual learning by updating the same ADAP-
TIVEGUARD model using OOD prompts from each attack in
the same experimental dataset used in RQ2. After each update,
we evaluate the model’s DSR on the test set corresponding to
the respective attack. We consider two update settings: in the
early stop setting, the continual learning process halts once
the model achieves 95% DSR on the current attack; in the no
early stop setting, training continues through all OOD prompts
regardless of intermediate performance.

Table I presents the DSR results for our sequential con-
tinual learning setup. The results show that ADAPTIVEG-
UARD achieves a 100% DSR across all 10 attacks when
trained without early stopping. Even with early stopping
enabled, the model maintains an average DSR of 98%.
Notably, the Obfuscation-Based attacks—Base64 (86%) and
Zulu (92%)—prove the most challenging to defend under
early stopping. This suggests that these attacks require more
adaptation steps for the model to fully internalize their patterns
in a guardrail. Overall, these results indicate that our continual

learning framework not only adapts effectively to new attack
types but also retains knowledge of previously encountered
ones. This makes it well-suited for real-world deployment,
where a single guardrail must continuously evolve to defend
against emerging threats without forgetting past vulnerabilities.

TABLE II
(DISCUSSION) COMPARISON OF SFT VS LORA PERFORMANCE ON

JAILBREAK DEFENSE

Statistic Full Fine-Tuning LoRA

DSR F1-Score DSR F1-Score

Min 1.00 0.800 0.90 0.848
Median 1.00 0.800 1.00 0.852
Max 1.00 0.801 1.00 0.856

Average 1.00 0.800 0.99 0.852

B. Trade-offs Between LoRA and Full Fine-Tuning for CL

In our continual learning (CL) framework, we adopted
LoRA-based adaptation for updating the guardrails. LoRA is
known for its computational efficiency, as it updates only
a small subset of parameters while keeping the rest of
the pre-trained model frozen. This selective adaptation can
lead to better knowledge retention—reflected as stronger in-
distribution performance in our context—and has been shown
to mitigate catastrophic forgetting compared to full-parameter
fine-tuning [25], [33]. While our results confirm LoRA’s
effectiveness, it remains unclear whether it consistently offers
better knowledge retention than full fine-tuning in the context.

To investigate this, we compare our LoRA-based ap-
proach [25] with full fine-tuning [34] using the same experi-
mental setup as in RQ2 and RQ3. Since the evaluation spans
ten different attacks, we report the minimum, median, and
maximum values for both DSR (representing performance for
OOD prompts) and F1-Score (performance for in-distribution
prompts). Table II presents the performance comparison be-
tween LoRA and full fine-tuning across all 10 attacks. Our
LoRA-based approach achieves a median DSR of 100% and a
median F1-Score of 85% on in-distribution prompts, indicating
strong knowledge retention. In contrast, full fine-tuning also
achieves a median DSR of 100% but yields a lower median F1-
Score of 80%. These results are consistent with prior findings
in the continual learning literature and demonstrate that our



LoRA-based method more effectively preserves previously
learned knowledge while adapting to new threats.

TABLE III
(DISCUSSION) TRAINING & INFERENCE TIME PER SAMPLE, AND MEMORY

USAGE DURING TRAINING

Metric AdaptiveGuard LlamaGuard 1B LlamaGuard 8B
LoRA LoRA LoRA

Training Time 0.60s 1.06s 2.04s
Inference Time 0.01s 0.25s 1.10s
Memory Usage 1.3 GB 4.0 GB 27.1 GB

C. Computational Efficiency: ADAPTIVEGUARD and Baselines

In the context of practical deployment of our ADAPTIVEG-
UARD, computational resources are a key consideration factor.
Therefore, we analyse (1) the training time per iteration (up-
date step), (2) inference time per testing sample, and (3) train-
ing and testing memory usage. We conduct the analysis using
the datasets from RQ2 and RQ3, comprising 992 jailbreak
attacks, 314 safe, and 640 unsafe NL prompts. We compare
our approach (ADAPTIVEGUARD+LoRA) with the baselines
LlamaGuard-1B+LoRA and LlamaGuard-8B+LoRA.

Table III summarises the computational efficiency of our
approach compared to baseline methods during both training
and inference. Compared to the LlamaGuard baselines, our
method demonstrates substantially greater efficiency. Specif-
ically, compared to LlamaGuard-1B and LlamaGuard-8B,
ADAPTIVEGUARD achieves 43% and 71% faster training
times during continual learning (CL), delivers 25× and 110×
faster inference, and reduces memory usage by 67% and 95%,
respectively. These substantial gains stem from the compact
architecture of our base model, GPT-2 (approximately 137M
parameters), in contrast to the considerably larger LlamaGuard
models with 1B and 8B parameters. These results highlight the
practicality of our approach for resource-constrained settings.

VII. THREATS TO VALIDITY

Threats to construct validity relate to the selection of
jailbreak attacks and OOD thresholds. We selected 10 different
jailbreak attacks guided by their prevalence to guardrails and
ability to represent a wide spectrum of jailbreak techniques
[27], [35], [36]. While additional attack types could be in-
cluded in future evaluations, this would not fundamentally alter
the key conclusions presented in our research questions: that
complex jailbreak attacks can be effectively detected by our
proposed OOD detection measures (RQ1), and that detected at-
tacks can be efficiently learned by ADAPTIVEGUARDthrough
continual learning with minimal catastrophic forgetting (RQ2
and RQ3). For the OOD threshold, we adopted commonly
used quantile-based thresholds (90%, 95%, and 99%) based
on the distribution of OOD scores on the training set [30],
[37]. This approach allows us to select the most appropriate
threshold values based on our experiments, ensuring that
only the most anomalous prompts are flagged for guardrail
adaptation. However, in practice, threshold selection is based

on various factors depending on the application’s tolerance for
risk and the distributional properties of the data.

Threats to internal validity relate to the potential in-
fluence of hyperparameter settings during the fine-tuning of
our ADAPTIVEGUARD and the selection of OOD detection
thresholds. Variations in energy threshold values, LoRA con-
figurations, or learning rates, compared to those specified in
Section IV, could impact experiment’s outcomes. To address
these threats, we open-source our replication package and
provide detailed documentation of all hyperparameter settings
to ensure the experiment is reproducible by future researchers.

Threats to external validity concern the generalizability
of our results. Our experiment findings are supported by the
dataset, jailbreak methods, and model architecture employed
during the study. Our training dataset contains 12,233 unsafe
prompts and 6,905 safe prompts. Our validation dataset con-
tains 314 safe and 640 unsafe natural language prompts to
assess false positive rates and catastrophic forgetting of ADAP-
TIVEGUARD. We also applied the 10 jailbreak attacks to 105
separate unsafe prompts, resulting in 1,050 jailbreak prompts
across 10 categories for RQ1. Of the 1,050 jailbreak prompts,
992 are identified as OOD and used to study the continual
learning adaptation in RQ2 and RQ3. Our evaluation focuses
on GPT-2 as the base model, which represents a widely-studied
language model in AI safety research, but may not capture the
behaviors of larger or more recent language models. While
ADAPTIVEGUARD is fine-tuned specifically to address the
jailbreak attacks and model configurations discussed in this
paper, other prompt datasets, jailbreak methods, and language
model architectures can be explored in future work.

VIII. CONCLUSION

In this paper, we first show that state-of-the-art guardrails
like LlamaGuard face a critical limitation, with their Defense
Success Rate (DSR) dropping to as low as 12% against
jailbreak attacks not seen during training. To address this, we
present ADAPTIVEGUARD, an OOD-aware continual learning
framework that detects and adapts to previously unseen jail-
break patterns by treating them as out-of-distribution (OOD)
inputs. This builds on the observation that guardrails like
LlamaGuard are trained on NL unsafe prompts, while jail-
breaks often use obfuscated inputs that fall outside their
training distribution. To evaluate ADAPTIVEGUARD, we com-
pile a dataset using ten state-of-the-art jailbreak methods:
AIM, DAN, Self Cipher, Deep Inception, SmartGPT, and
Code Chameleon. Through our evaluation, we found that
ADAPTIVEGUARD achieves a 96% true positive rate in OOD
detection and reaches 100% DSR within a median of two
update steps—twice as fast as LlamaGuard under the same
continual learning setup. Moreover, ADAPTIVEGUARD retains
85% F1-score on in-distribution data after adaptation, outper-
forming LlamaGuard’s 80%. These results demonstrate that
ADAPTIVEGUARD could offer an effective post-deployment
solution for adaptive jailbreak defense in dynamic production.



REFERENCES

[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al.,
“On the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[2] R. Yang, M. Fu, C. Tantithamthavorn, C. Arora, L. Vandenhurk, and
J. Chua, “Ragva: Engineering retrieval augmented generation-based
virtual assistants in practice,” Journal of Systems and Software, p.
112436, 2025.

[3] Y. Bengio, G. Hinton, A. Yao, D. Song, P. Abbeel, T. Darrell, Y. N.
Harari, Y.-Q. Zhang, L. Xue, S. Shalev-Shwartz et al., “Managing
extreme ai risks amid rapid progress,” Science, vol. 384, no. 6698, pp.
842–845, 2024.

[4] A. E. Hassan, G. A. Oliva, D. Lin, B. Chen, Z. Ming et al., “Re-
thinking software engineering in the foundation model era: From task-
driven ai copilots to goal-driven ai pair programmers,” arXiv preprint
arXiv:2404.10225, 2024.

[5] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on
large language model (llm) security and privacy: The good, the bad, and
the ugly,” High-Confidence Computing, p. 100211, 2024.

[6] H. Inan, K. Upasani, J. Chi, R. Rungta, K. Iyer, Y. Mao, M. Tontchev,
Q. Hu, B. Fuller, D. Testuggine et al., “Llama guard: Llm-based
input-output safeguard for human-ai conversations,” arXiv preprint
arXiv:2312.06674, 2023.

[7] A. Lees, V. Q. Tran, Y. Tay, J. Sorensen, J. Gupta, D. Metzler,
and L. Vasserman, “A new generation of perspective api: Efficient
multilingual character-level transformers,” in Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery and data mining,
2022, pp. 3197–3207.

[8] T. Markov, C. Zhang, S. Agarwal, F. E. Nekoul, T. Lee, S. Adler,
A. Jiang, and L. Weng, “A holistic approach to undesired content
detection in the real world,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 12, 2023, pp. 15 009–15 018.

[9] G. Alon and M. Kamfonas, “Detecting language model attacks with
perplexity,” arXiv preprint arXiv:2308.14132, 2023.

[10] X. Zhao, W. Cai, T. Shi, D. Huang, L. Lin, S. Mei, and D. Song,
“Improving llm safety alignment with dual-objective optimization,”
arXiv preprint arXiv:2503.03710, 2025.

[11] T. Du, Z. Wei, Q. Chen, C. Zhang, and Y. Wang, “Advancing llm
safe alignment with safety representation ranking,” arXiv preprint
arXiv:2505.15710, 2025.

[12] R. Alami, A. K. Almansoori, A. Alzubaidi, M. E. A. Seddik, M. Farooq,
and H. Hacid, “Alignment with preference optimization is all you need
for llm safety,” arXiv preprint arXiv:2409.07772, 2024.

[13] S. Ge, C. Zhou, R. Hou, M. Khabsa, Y.-C. Wang, Q. Wang, J. Han,
and Y. Mao, “Mart: Improving llm safety with multi-round automatic
red-teaming,” arXiv preprint arXiv:2311.07689, 2023.

[14] Y. Yuan, W. Jiao, W. Wang, J.-t. Huang, P. He, S. Shi, and Z. Tu, “Gpt-
4 is too smart to be safe: Stealthy chat with llms via cipher,” arXiv
preprint arXiv:2308.06463, 2023.

[15] Z.-X. Yong, C. Menghini, and S. H. Bach, “Low-resource languages
jailbreak gpt-4,” arXiv preprint arXiv:2310.02446, 2023.

[16] Jailbreak Chat, “Jailbreak chat prompt,” 2023, last accessed:
2024-09-20. [Online]. Available: https://www.jailbreakchat.com/prompt/
4f37a029-9dff-4862-b323-c96a5504de5d

[17] X. Shen, Z. Chen, M. Backes, Y. Shen, and Y. Zhang, “” do anything
now”: Characterizing and evaluating in-the-wild jailbreak prompts on
large language models,” arXiv preprint arXiv:2308.03825, 2023.

[18] X. Li, Z. Zhou, J. Zhu, J. Yao, T. Liu, and B. Han, “Deepinception:
Hypnotize large language model to be jailbreaker,” arXiv preprint
arXiv:2311.03191, 2023.

[19] H. Lv, X. Wang, Y. Zhang, C. Huang, S. Dou, J. Ye, T. Gui, Q. Zhang,
and X. Huang, “Codechameleon: Personalized encryption framework for
jailbreaking large language models,” arXiv preprint arXiv:2402.16717,
2024.

[20] D. Kang, X. Li, I. Stoica, C. Guestrin, M. Zaharia, and T. Hashimoto,
“Exploiting programmatic behavior of llms: Dual-use through standard
security attacks,” in 2024 IEEE Security and Privacy Workshops (SPW).
IEEE, 2024, pp. 132–143.

[21] Y. Gan, Y. Yang, Z. Ma, P. He, R. Zeng, Y. Wang, Q. Li, C. Zhou, S. Li,
T. Wang et al., “Navigating the risks: A survey of security, privacy, and
ethics threats in llm-based agents,” arXiv preprint arXiv:2411.09523,
2024.

[22] S. Ghosh, P. Varshney, M. N. Sreedhar, A. Padmakumar, T. Rebedea,
J. R. Varghese, and C. Parisien, “Aegis2. 0: A diverse ai safety dataset
and risks taxonomy for alignment of llm guardrails,” arXiv preprint
arXiv:2501.09004, 2025.

[23] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[24] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[25] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, L. Wang, and W. Chen,
“Lora: Low-rank adaptation of large language models,” in International
Conference on Learning Representations (ICLR), 2022.

[26] W. Luo, S. Ma, X. Liu, X. Guo, and C. Xiao, “Jailbreakv-28k: A
benchmark for assessing the robustness of multimodal large language
models against jailbreak attacks,” arXiv e-prints, pp. arXiv–2404, 2024.

[27] A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken: How does llm
safety training fail?” Advances in Neural Information Processing Sys-
tems, vol. 36, 2024.

[28] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[30] W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution
detection,” Advances in neural information processing systems, vol. 33,
pp. 21 464–21 475, 2020.

[31] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. Depristo, J. Dillon,
and B. Lakshminarayanan, “Likelihood ratios for out-of-distribution
detection,” Advances in neural information processing systems, vol. 32,
2019.

[32] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[33] P. He, X. Liu, J. Gao, and W. Chen, “Towards continual learning for
natural language generation with prompt tuning,” in NeurIPS, 2022.

[34] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018.

[35] Y. Dong, R. Mu, Y. Zhang, S. Sun, T. Zhang, C. Wu, G. Jin, Y. Qi,
J. Hu, J. Meng et al., “Safeguarding large language models: A survey,”
arXiv preprint arXiv:2406.02622, 2024.

[36] S. Yi, Y. Liu, Z. Sun, T. Cong, X. He, J. Song, K. Xu, and Q. Li, “Jail-
break attacks and defenses against large language models: A survey,”
arXiv preprint arXiv:2407.04295, 2024.

[37] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for
detecting out-of-distribution samples and adversarial attacks,” Advances
in neural information processing systems, vol. 31, 2018.

https://www.jailbreakchat.com/prompt/4f37a029-9dff-4862-b323-c96a5504de5d
https://www.jailbreakchat.com/prompt/4f37a029-9dff-4862-b323-c96a5504de5d

	Introduction
	Industrial Context and Problem Motivation
	LLM-Powered Intelligent Virtual Assistant at Transurban
	Engineering Challenge: Adaptive Runtime Safety for LLM-Powered Systems
	Preliminary Analysis of Existing Runtime Guardrail

	Approach
	Building OOD-Aware AdaptiveGuard
	OOD Detection Using Mahalanobis Distance
	Continual Defence with OOD Samples and LoRA

	Experimental Design
	Research Questions
	Dataset Preparation
	Model Update Technique for Continual Learning
	Experiment Setup
	Model Implementation & Optimisation
	Hyper-parameters Settings (AdaptiveGuard Training)
	Hyper-parameters Settings (Continual Learning)


	Experimental Results
	RQ1: How effective is our AdaptiveGuard approach in identifying unknown jailbreak prompts?
	RQ2: How quickly does our AdaptiveGuard approach adapt to unknown jailbreak attacks when continuously updated through detected OOD prompts?
	RQ3: How well does our AdaptiveGuard approach retain performance on in-distribution prompts after continuous updates with detected OOD prompts?

	Discussion
	Continual Performance Without Model Reinitialization
	Trade-offs Between LoRA and Full Fine-Tuning for CL
	Computational Efficiency: AdaptiveGuard and Baselines

	Threats to Validity
	Conclusion
	References

